

Specifications

St. Cloud VA Health Care System

4801 Veterans Drive St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

VA Contract No. Station Project No. Bancroft-AE Project No.

36C26319D0022 656-19-309 18-116

Issue for Bid

Divisions 00-28

June 02, 2023

BANCROFT ARCHITECTS + ENGINEERS 700 Nicholas Blvd. Suite 300 | Elk Grove Village, IL 60007 847.952.9362 | www.bancroft-ae.com

DIVISION 00

Bancroft Architects + Engineers

12-30-22

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO.	DIVISION AND SECTION TITLES		
	DIVISION 00 - SPECIAL SECTIONS		
00 01 15	List of Drawing Sheets	05-20	
	DIVISION 01 - GENERAL REQUIREMENTS		
01 00 00	General Requirements	11-21	
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build)	11-21	
01 33 23	Shop Drawings, Product Data, and Samples	06-21	
01 35 26	Safety Requirements	11-21	
01 42 19	Reference Standards	11-20	
01 45 00	Quality Control	02-21	
01 45 29	Testing Laboratory Services	11-18	
01 57 19	Temporary Environmental Controls	01-21	
01 58 16	Temporary Interior Signage	07-15	
01 74 19	Construction Waste Management	04-22	
01 81 13	Sustainable Construction Requirements	10-17	
01 91 00	General Commissioning Requirements	04-22	
	DIVISION 02 - EXISTING CONDITIONS		
02 41 00	Demolition	08-17	
02 82 11	Traditional Asbestos Abatement	01-21	
02 82 13.13	Glovebag Asbestos Abatement	01-21	
02 82 13.19	Asbestos Floor Tile and Mastic Abatement	01-21	
02 83 33.13	Lead-Based Paint Removal and Disposal	01-21	
	DIVISION 03 - CONCRETE (NOT USED)		
	DIVISION 04 - MASONRY		
04 01 00	Maintenance of Masonry	01-21	
	DIVISION 05 - METALS (NOT USED)		
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES (NOT USED)		
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION		
07 01 50.19	Preparation for Re-Roofing	01-21	

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-22

SECTION NO.	DIVISION AND SECTION TITLES	DATE
07 21 13	Thermal Insulation	01-21
07 31 13	Asphalt Shingles	02-21
07 60 00	Flashing and Sheet Metal	01-21
07 84 00	Firestopping	01-21
07 92 00	Joint Sealants	04-22
	DIVISION 08 - OPENINGS	
00 11 10		01 01
08 11 13	Hollow Metal Doors and Frames	01-21
08 14 00	Interior Wood Doors	01-21
08 31 13	Access Doors and Frames	04-22
08 71 00	Door Hardware	05-22
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20
09 29 00		04-20
	Ceramic/Porcelain Tiling	
09 51 00	Acoustical Ceilings	12-18
09 65 13	Resilient Base and Accessories	01-21
09 91 00	Painting	01-21
	DIVISION 10 - SPECIALTIES	
	DIVISION IU - SPECIALITES	
10 14 00	Signage	01-21
10 26 00	Wall and Door Protection	01-21
10 20 00		01 21
	DIVISION 11 - EQUIPMENT (NOT USED)	
	DIVISION 12 - FURNISHINGS (NOT USED)	
	DIVISION 12 OPECIAL CONCERNICETON (NOR MORE)	
	DIVISION 13 - SPECIAL CONSTRUCTION (NOT USED)	
	DIVISION 14- CONVEYING EQUIPEMENT (NOT USED)	
	DIVISION 21- FIRE SUPPRESSION	
21 08 00	Commissioning of Fire Suppression System	11_16
21 08 00	Commissioning of Fire Suppression System	11-16
21 13 13	Wet-Pipe Sprinkler Systems	06-15

Bancroft Architects + Engineers

12-30-22

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	09-20
22 05 19	Meters and Gages for Plumbing Piping	09-20
22 05 23	General-Duty Valves for Plumbing Piping	09-20
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	11-16
22 11 00	Facility Water Distribution	05-21
22 13 00	Facility Sanitary and Vent Piping	09-20
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	04-22
23 05 12	General Motor Requirements for HVAC and Steam	02-20
20 00 12	Generation Equipment	02 20
23 05 41	Noise and Vibration Control for HVAC Piping and	02-20
20 00 11	Equipment	02 20
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 08 00	Commissioning of HVAC Systems	04-22
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	02-20
23 21 23	Hydronic Pumps	02-20
23 22 13	Steam and Condensate Heating Piping	02-20
23 22 23	Steam Condensate Pumps	04-20
23 25 00	HVAC Water Treatment	02-20
23 31 00	HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 36 00	Air Terminal Units	02-20
23 37 00	Air Outlets and Inlets	02-20
23 40 00	HVAC Air Cleaning Devices	03-20
23 64 00	Packaged Water Chillers	03-20
23 73 00	Indoor Central-Station Air-Handling Units	03-20
23 74 13	Packaged, Outdoor, Central-Station Air-Handling Units	03-20
23 82 00	Convection Heating and Cooling Units	03-20
23 82 16	Air Coils	03-20
23 02 10		03 20
	DIVISION 25 - INTEGRATED AUTOMATION (NOT USED)	
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	01-17

Bancroft Architects + Engineers

12-30-22

SECTION NO.	DIVISION AND SECTION TITLES	DATE
26 05 33	Raceway and Boxes for Electrical Systems	01-18
26 05 73	Overcurrent Protective Device Coordination Study	01-18
26 27 26	Wiring Devices	01-18
26 29 21	Enclosed Switches and Circuit Breakers	01-17
26 36 23	Automatic Transfer Switches	01-17
26 51 00	Interior Lighting	01-18
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	09-19
27 05 26	Grounding and Bonding for Communications Systems	06-15
27 05 33	Raceways and Boxes for Communications Systems	10-18
27 10 00	Control, Communication and Signal Wiring	06-15
27 15 00	Communications Structured Cabling	01-16
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY (NOT USED)	
28 05 13	Conductors and Cables for Electronic Safety and Security	10-18
28 05 28.33	Conduits and Backboxes for Electronic Safety and Security	09-11
28 08 00	Commissioning of Electronic Safety and Security Systems	11-16
28 31 00	Fire Detection and Alarm	10-11
	DIVISION 31 - EARTHWORK (NOT USED)	
	DIVISION 32 - EXTERIOR IMPROVEMENTS (NOT USED)	
	DIVISION 52 - EXTERIOR IMPROVEMENTS (NOT USED)	
	DIVISION 33 - UTILITIES (NOT USED)	
	DIVISION 34 - TRANSPORTATION (NOT USED)	
	DIVISION 48 - Electrical Power Generation (NOT USED)	

05-01-20

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of

the contract.

GENERAL	
G000	GENERAL - COVER SHEET
G001	GENERAL - DRAWING INDEX
GI100	GENERAL - CONTRACTOR AND B.O.D. PROTOCOL NOTES
GI101	GENERAL - PROTECTION PROTOCOL SOW AND MISC NOTES
GI102	GENERAL - DEMOLITION NOTES
GI103	GENERAL - ABBREV., SYMBS, LEGENDS, STD. MOUNTING HGHTS
GI200	GENERAL - CODE AND BUILDING INFORMATION
GI400	GENERAL - BASEMENT - INFECTION CONTROL PLAN
GI401	GENERAL - FIRST FLOOR - INFECTION CONTROL PLAN
GI402	GENERAL - SECOND FLOOR - INFECTION CONTROL PLAN
GI410	GENERAL - INFECTION CONTROL ICRA NOTES CLASS III
GI411	GENERAL - INFECTION CONTROL ICRA DRAWINGS CLASS III
GI500	GENERAL - BASEMENT - PHASING PLAN
GI501	GENERAL - FIRST FLOOR - PHASING PLAN
GI502	GENERAL - SECOND FLOOR - PHASING PLAN
GI503	GENERAL - ATTIC - PHASING PLAN
GI504	GENERAL - ROOF - PHASING PLAN
GC101	GENERAL - SITE STAGING PLAN

HAZARDOUS MATERIALS

Drawing No.

Title

HA100	HAZARDOUS	MATERIAL	PLAN -	ASBESTOS/LEAD	-	BASEMENT
HA100S	HAZARDOUS	MATERIAL	PLAN -	ASBESTOS/LEAD	-	SUB-BASEMENT
HA102	HAZARDOUS	MATERIAL	PLAN -	ASBESTOS/LEAD	-	SECOND FLOOR

STRUCTURAL

S100	STRUCTURAL -	BASEMENT	FLOOR	FRAMING	PLAN
S101	STRUCTURAL -	FIRST FLC	OR FRA	MING PLA	N
S102	STRUCTURAL -	SECOND FL	JOOR FF	RAMING PI	JAN

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

00 01 15 - 1

05-01-20

S103	STRUCTURAL	-	THIRD	/ATTIC	FLOOR	FRAMING	PLAN
S104	STRUCTURAL	_	ROOF	FLOOR	FRAMING	, PLAN	

S200 STRUCTURAL - DETAILS

ARCHITECTURAL

AD100	ARCHITECTURAL -	BASEMENT- DEMOLITION PLAN
AD101	ARCHITECTURAL -	FIRST FLOOR - DEMOLITION PLAN
AD102	ARCHITECTURAL -	SECOND FLOOR - DEMOLITION PLAN
AD103	ARCHITECTURAL -	ATTIC - DEMOLITION PLAN
AD104	ARCHITECTURAL -	ROOF - DEMOLITION PLAN
AD201	ARCHITECTURAL -	DEMOLITION EXTERIOR ELEVATION - WEST
ACD100	ARCHITECTURAL -	BASEMENT - REFLECTED CEILING DEMO PLAN
ACD101	ARCHITECTURAL -	FIRST FLOOR - CEILING DEMOLITION PLAN
ACD102	ARCHITECTURAL -	SECOND FLOOR - CEILING DEMOLITION PLAN
A100	ARCHITECTURAL -	BASEMENT PLAN
A101	ARCHITECTURAL -	FIRST FLOOR PLAN
A102	ARCHITECTURAL -	SECOND FLOOR PLAN
A103	ARCHITECTURAL -	ATTIC PLAN
A104	ARCHITECTURAL -	ROOF PLAN
AC100	ARCHITECTURAL -	BASEMENT - REFLECTED CEILING PLAN
AC101	ARCHITECTURAL -	FIRST FLOOR - REFLECTED CEILING PLAN
A201	ARCHITECTURAL -	EXTERIOR ELEVATION -WEST
A401	ARCHITECTURAL -	ENLARGED PLAN - RM 7 & RM 10
A501	ARCHITECTURAL -	PARTITION SCHEDULE
A502	ARCHITECTURAL -	PARTITION SCHEDULE
A600	ARCHITECTURAL -	DOOR SCHEDULE & DETAILS
AI600	ARCHITECTURAL -	FINISH LEGEND AND SCHEDULE

FIRE PROTECTION

FX001	FIRE PROTECTION - GENERAL NOTES, SYMBOLS, AND ABB	REVIATIONS
FXD-100	FIRE PROTECTION - BASEMENT FLOOR - DEMOLITION PLAN	1
FX-100	FIRE PROTECTION - BASEMENT	
FX-101	FIRE PROTECTION - FIRST FLOOR PLAN	
FX-102	FIRE PROTECTION - SECOND FLOOR PLAN	
FX-103	FIRE PROTECTION - ATTIC PLAN	
FX-400	FIRE PROTECTION - ENLARGED BASEMENT PLANS	
2	36C26319D0022 ct No. 656-19-039 roject No. 18-116	06/02/20

05-01-20

FX500 FIRE PROTECTION - DETAILS

PLUMBING

P001	PLUMBING - GENERAL NOTES, LEGEND & ABBREVIATIONS
PD100	PLUMBING - SUB-BASEMENT - DEMOLITION PLAN
PD101	PLUMBING - BASEMENT PLAN - DEMOLITION
P100	PLUMBING - SUB-BASEMENT PLAN
P101	PLUMBING - BASEMENT FLOOR PLAN
P400	PLUMBING - ENLARGED MECHANICAL ROOM PLAN
P600	PLUMBING - SCHEDULES

MECHANICAL

MH001	MECHANICAL - GENERAL NOTES, SYMBOLS, AND ABBREVIATION	NS
MHD100	MECHANICAL VENTILATION - BASEMENT - DEMOLITION PLAN	
MPD000	OVERALL MECHANICAL PIPING - CAMPUS - DEMOLITION PLAN	
MPD100S	MECHANICAL PIPING - SUB-BASEMENT - DEMOLITION PLAN	
MPD100	MECHANICAL PIPING - BASEMENT - DEMOLITION PLAN	
MPD400	MECHANICAL PIPING - MECH. ROOM - DEMOLITION PLAN	
MH100	MECHANICAL VENTILATION - BASEMENT PLAN	
MH100.1	MECHANICAL VENTILATION - BASEMENT PLAN - AREA 1	
MH100.2	MECHANICAL VENTILATION - BASEMENT PLAN - AREA 2	
MH101	MECHANICAL VENTILATION - FIRST FLOOR PLAN	
MH102	MECHANICAL VENTILATION - SECOND FLOOR PLAN	
MH103	MECHANICAL VENTILATION - ATTIC FLOOR PLAN	
MH104	MECHANICAL VENTILATION - ROOF PLAN	
MP000	OVERALL MECHANICAL PIPING - CAMPUS - NEW WORK PLAN	
MP100S	MECHANICAL PIPING - SUB-BASEMENT PLAN	
MP100	MECHANICAL PIPING - BASEMENT PLAN	
MP400	MECHANICAL PIPING - MECHANICAL ROOM PLAN	
M501	MECHANICAL - DETAILS	
M502	MECHANICAL - DETAILS	
M503	MECHANICAL - DETAILS	
M504	MECHANICAL - DETAILS	
M505	MECHANICAL - DETAILS	
M601	MECHANICAL - SCHEDULES	
M602	MECHANICAL - SCHEDULES	
	86C26319D0022 st No. 656-19-039 soject No. 18-116	0

05-01-20

M701	MECHANICAL - CONTROLS
M702	MECHANICAL - CONTROLS
М703	MECHANICAL - CONTROLS
M704	MECHANICAL - CONTROLS

ELECTRICAL

E001	ELECTRICAL GENERAL NOTES
E002	ELECTRICAL LEGEND AND ABBREVIATIONS
E100	ELECTRICAL DEMO PLAN - SUB-BASEMENT POWER
E101	ELECTRICAL DEMOLITION PLAN - BASEMENT LIGHTING
E102	ELECTRICAL DEMOLITION PLAN - BASEMENT HVAC-PLUMBING
E201	ELECTRICAL NEW PLAN - BASEMENT LIGHTING
E300	ELECTRICAL NEW PLAN - SUB-BASEMENT POWER
E301	ELECTRICAL NEW PLAN - BASEMENT POWER
E401	ELECTRICAL ONE-LINE
E402	ELECTRICAL ONE-LINE
E501	ELECTRICAL DETAILS
E601	ELECTRICAL SCHEDULES
E602	ELECTRICAL SCHEDULES
E603	ELECTRICAL SCHEDULES

- - - END - - -

DIVISION 01

SECTION 01 00 00 GENERAL REQUIREMENTS TABLE OF CONTENTS

1.1	SAFETY REQUIREMENTS	1
1.2	GENERAL INTENTION	1
1.3	STATEMENT OF BID ITEM(S)	4
1.4	SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	5
1.5	CONSTRUCTION SECURITY REQUIREMENTS	5
1.6	OPERATIONS AND STORAGE AREAS	9
1.7	ALTERATIONS	22
1.8	DISPOSAL AND RETENTION	24
	PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS	21
	RESTORATION	
1.11	PHYSICAL DATA	27
1.12	PROFESSIONAL SURVEYING SERVICES	27
1.13	LAYOUT OF WORK	27
1.14	AS-BUILT DRAWINGS	27
1.15	USE OF ROADWAYS	28
1.16	TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	28
1.17	TEMPORARY USE OF EXISTING ELEVATORS	
1.21	AVAILABILITY AND USE OF UTILITY SERVICES	
1.23	TESTS	40
1.24	INSTRUCTIONS	42
	REBATE DOCUMENTATION	53
Stat	ract No. 36C26319D0022 ion Project No. 656-19-039 roft-AE Project No. 18-116	06/02/2023

Rev.7 - 6/23/22

1.34	SITE INSPECTIONS
1.35	Project/Phase Occupancy
1.36	Contracting Officer Representative Coordination

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

6-23-22

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements. Throughout the campus there is existing hazardous material (lead paint, asbestos, etc); not all areas are shown on the drawings. Contractor shall maintain awareness, have safety plans, PPE and comply with OSHA, EPA and other related regulations when working near assemblies.

In addition to the requirements of the safety section, the contractor shall submit Safety Data Sheets per OSHA, for all products, chemicals, etc to be used on site within 15 business days of contract award. Any changes to the material, products, chemicals planned for use during the project shall be submitted and approved 15 business days prior to bringing the material onsite.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare building and site for building operations, including demolition and removal of existing structures, and mechanical, electrical and plumbing components and furnish labor and materials and perform work for the construction and replacement of Building 50 Basement Level Mechanical, Electrical and Plumbing Systems as required by drawings and specifications.
 - The contract duration shall include all work, inspections and punch list corrections. Beneficial occupancy and final acceptance shall be achieved within the contract duration.
 - Contract working hours are 8 am to 4:30 pm Monday through Friday, excluding Federal Holidays.
- B. Visits to the site by Bidders may be made only by appointment with the Contracting Officer.

6-23-22

- C. Offices of Bancroft Architects and Engineeres, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by the Contractor. The Contractor shall notify the COR not less than two work days in advance of the tests/inspection.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- F. Prior to commencing work, the general contractor shall provide proof that the project supervisor assigned to the project is an OSHA 30 certified "competent person" (CP) (29 CFR 1926.20(b)(2). The CP will maintain a presence at the work site whenever the employees of the general contractor or subcontractors are present.
- G. Training:
 - The Contractor's project supervisor is required to attend GEMS and Safety training provided by VA St. Cloud. Training must be attended prior to being designated as a job supervisor on any VA St. Cloud construction project.
 - 2. All employees of general contractor and subcontractors shall have, at a minimum, the 10-hour OSHA certified Construction Safety course and other relevant competency training, as determined by VA CP with input from the Infection Control Risk Assessment (ICRA) team.
 - Submit training records of all such employees for approval before the start of work.

6-23-22

- Notice to proceed will be issued not less than 2 weeks after receipt of bonds; time extensions will not be granted because of the need for training.
- H. Identification Badge:

All contractor employees working on this project will be required to obtain and wear while on VA property, a VA picture identification badge. The badge will only be issued to those employees having the appropriate OSHA Construction Safety Cards. All completed badge request forms, proof of OSHA training and any other required certificates shall be submitted electronically 30 business days in advance of working on site. Contractors will then be issued a badge free of charge by the VA. A separate site visit prior to performing work by each contractor employee shall be expected to obtain a badge. Contractors shall not perform work without a VA issued badge. All ID badges must be returned upon contract completion. There will be a \$200 charge for each PIV/Flash ID badge not returned at the end of the contract. There will be a \$25 charge for "facility" badges and "contractor" or consultant badges. Reference security procedures for additional information. Payments to invoices will be withheld for badging noncompliance.

Contractor and subcontractor employees that will work on VA property shall submit the following information to the Contracting Officer's Representative (COR) when requesting a badge:

First, middle and last name (Legal name, as shown on picture ID)
Date of Birth (DOB)
Social Security Number (SSN)
Height
Eye Color
Hair Color
Name of Firm or Company

6-23-22

Place of Birth: Town/State VA Contract Number VA Project Name Name of COR

- I. Project Acceptance (Substantial Completion):
 - The acceptance of a project for substantial completion is to include the following:
 - a. The completion of all items to meet the criteria of the contract drawings and specifications to the satisfaction of the Contracting Officer (CO). Items for correction may be considered to be punch list items, as determined by the CO, if the COR finds them to be minor in correction. Value for the corrections will be held by the VA, as determined by the CO, until all corrections are completed to the satisfaction of the CO.
 - b. The VA will not accept a project, or phase of a project as determined by contract documents, as substantially complete until a <u>complete passing test and balance report of the HVAC system</u> has been submitted and accepted as complete and passing by the CO. It is recommended that the HVAC system be completed with sufficient time to make corrections to submit a passing report. A time extension to the contract will not be considered for corrections to the HVAC system that are determined by the CO to be installation or design errors if within the contract.
 - c. Occupancy and/or use of contractor provided/installed items does not require acceptance by the government. Contractor is to coordinate with the COR and the Contracting Officer when this condition exists.

- d. In addition to the above items, the following conditions included in the contract shall be satisfied prior to requesting a final inspection to consider a substantial completion date.
 - All items completed within Division 1.

 a. Occupied flushing of the building or similar commissioning activities identified prior to request of the final inspection may be considered punch list items subject to the discretion of the COR and Contracting Officer.
 - 2. All items completed within Division 2 thru 8.
 - 3. All items completed within Division 9.

a. No more than 1 patch and paint repair within 100 linear feet of wall shall be accepted as a punch list condition per project/phase. Unfinished painting conditions shall not be accepted as punch list items (i.e. cuts, blemishes, flashing etc).

b. No more than 1 flooring repair per 200 square feet shall be accepted as a punch list condition. Flooring repair is defined as gaps between tiles, grout damage, grout stains, grout gaps, broken tiles/flooring, scratches in tile/grout/flooring, gaps between wall base and flooring, incomplete transitions, poor adhesion, discoloration, etc.

c. No more than 1 ceiling repair per 200 square feet shall be accepted as a punch list condition.

- All contractor furnished and/or contractor installed items completed within Division 10 and 11.
- 5. All items completed within Division 12 thru 22.
- 6. All items completed within Division 23. a. Occupied flushing of the building or similar commissioning activities identified prior to request of the final inspection may be considered punch list

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

6-23-22

items subject to the discretion of the COR and Contracting Officer.

7. All items completed within Division 25 thru 48.

- E. General contractor to have dedicated site superintendent that is assigned to this project only. Contractor to include project management, site supervision and related expenses for the entire period of performance.
- 1.3 STATEMENT OF BID ITEM(S)
 - A. ITEM I- BASE BID: Work includes mechanical and electrical upgrades to the basement of Building 50, including, but not limited to, the following.
 - Installation of an air-handling unit within the footprint of the basement to provide year-round conditioning to all rooms of the basement, excluding air-handling for the Sterile Processing Services (SPS) and Sterile Processing Department (SPD) areas (primarily the northeast and northwest wings of the building) which are on a separate air-handling system.
 - Installation of two make-up air units one each serving Kitchen Tray Service (Room 7) and Kitchen Dishwashing (Room 10).
 - Ductwork modifications / additions as required to provide proper air balances in spaces served by the new air-handling unit and the makeup air units.
 - 4. Installation of new radiators in Scanning and Filing Room (Room 4).
 - 5. Installation of a condensate flash tank and receiver to collect condensate from the building's steam systems.
 - Installation of a new backflow preventer on the incoming potable water line and fire sprinkler protection system line.
 - 7. Replacement of potable water distribution piping in the crawl space of the building.
 - Upgrades to the electrical system as required to serve the above items.
 - 9. Replacement of the existing automatic transfer switch with a new 600 amp, 4 pole system.

6-23-22

- 10. Replacement of all basement level light fixtures with LED fixtures.
- 11. Replacement of the existing ceramic floor and wall tiles in in Room 7 and Room 10.
- 12. Replacement of the existing ceiling system in Room 7 and Room 10.
- 13. Demolition of existing building construction and components as required to accommodate new construction and components identified above and Item 14 below.
- 14. New construction of walls, doors and finishes as required to provide for fully finished new or altered mechanical and electrical spaces.
- 15. Structural modifications / new construction to accommodate the exterior make-up air units, the interior air-handling unit and new outside air intake ductwork from the basement through the First Floor, Second Floor, Attic and Roof above.
- 16. Exterior landscape repairs as required due to installation of new make-up air units and an ATS.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, Contractor is to provide his/her own drawings and specifications as downloaded from WWW.SAM.gov
- B. The Contractor has the Duty of Coordination. By executing the contract the contractor agrees the contract package has been reviewed (prior to bid) to ensure that each trade included all work required to construct functional systems.
- C. There is no requirement that the construction documents be completely accurate. Minor clarifications and coordination of details are not changes due to defective specifications.
- D. Omissions from the drawings or specifications or the misdescription of details of work which are manifestly necessary to carry out the intent of the drawings and specifications, or which are customarily performed, shall not relieve the contractor from performing such omitted or

6-23-22

misdescribed details of the work, but they shall be performed as if fully and correctly set forth and described in the drawings and specifications. The contractor shall furnish and install complete and functional systems.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. All contractor and subcontractor employees working on this project are subject to a background investigation. VA has the right to refuse to badge any employee that does not pass the background investigation. It is expected that the contractor will have the employee scheduled for the issuance of a badge well in advance of starting work. Due to the badge process, the employee will not be able come to the VA, receive badge, and conduct work on same day. There will be a \$200 fine for badges issued and not returned upon completion of project.
 - 3. Before starting work the General Contractor shall give 15 business days' notice to the COR so that security arrangements can be provided for the employees. This notice is separate from any

6-23-22

notices required for utility shutdown described later in this section.

- 4. For working outside the "regular hours" as defined in the contract, the General Contractor shall give 15 business days' notice to the Contracting Officer and the COR so that arrangements can be made. This notice is separate from any notices required for utility shutdown described later in this section.
- 5. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 6. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- 7. The prime contractor shall secure the entire construction operation (interior and exterior, staging, work area(s), etc) to prevent unauthorized access and to maintain appropriate (1 or 2 hour fire rating) fire separation between construction activities and VA space. It is the contractor's responsibility to furnish and install temporary walls/ceiling, chain link 8' fences, doors, gates, hardware for doors and/or gates as needed for their activities. Not all temporary provisions are illustrated on the construction documents. The contractor shall include 64 square feet of sheetrock assembly patching to patch existing walls used as construction barriers to a 1 hour fire barrier rating in each project phase. The contractor shall include 20 linear feet of red in color, fire caulk patching to existing walls used as construction barriers in each project phase. The contractor shall include UL listed fire barrier assemblies for temporary fire barrier protection thru construction barriers and other permanent fire barriers.

Prior to installing temporary walls, the contractor and the COR shall inspect the existing conditions to determine if existing

6-23-22

penetrations exist in existing fire barriers. The contractor shall ensure all fire barriers around the construction site are compliant prior to commencing with other non-fire barrier related construction activities.

Temporary construction walls/ceilings shall be constructed of noncombustible material (metal framing with gypsum sheathing), per a UL rated 1hr fire rated assembly minimum (match existing rating if more than 1 hr), sound insulated with mineral wool batts and to a level 2 finish on the public side of the wall/ceiling. If the temporary construction wall/ceiling will remain in place for more than 5 business days, it shall be painted to cover, the color of the adjacent wall. Wood shall not be used in the temporary wall/ceiling assemblies. Corner guards or similar protective furnishing shall be at the contractors discretion. It is the contractors responsibility to repair/maintain the temporary assemblies due to wear and tear caused by operations of the VA, contractor shall include costs for upkeep of the temporary barriers. Not all temporary wall/ceiling locations are illustrated on the plans. The contractor shall include material and labor as needed to separate VA occupied space and the construction activity. Temporary walls/ceilings shall be assembled in a manner to control dust per ICRA and remain compliant with below fire resistant poly duration limitations.

Temporary construction doors (interior and exterior) shall be an UL rated assembly with a minimum rating to be installed into a 1 hr fire rated wall or match increased rating of wall. Not all construction ingress and egress doors are illustrated on the plans. The contractor shall include material and labor for temporary doors and hardware to separate VA occupied space and the construction site. Repairing existing doors with wood filler due to temporary door hardware is not allowed. If the contractor alters an existing door for use as a temporary construction door, it shall be replaced with a new like and kind door assembly.

6-23-22

Fire resistant poly products per NFPA 241 shall only be used as dust control. It shall be used for up to (1) 8 hour work shift in a single location.

- 8. Contractor shall comply with VHA St. Cloud influenza policy (VHA Directive 1192.01 and VHA Directive 1013). Contractor shall direct all subcontractors working on site to also comply with VHA St. Cloud influenza policy. To comply with this policy, all contractors must complete a Health Care Personnel Influenza Vaccination Form during the influenza season which is generally from December 1 through March 31; however, it can vary from one season or geographic location to another. For security reasons, these forms are to be submitted directly to the St. Cloud VA Infection Prevention Nurse, whom will document and track influenza vaccination status. Starting at the end of December until the end of March, Contractor shall provide monthly a list of all contractors working on site. This list will be provided to the St. Cloud VA Infection Prevention Nurse whom can check against their documentation to confirm forms have been received for all contractors working on site during the influenza season. A copy of Directive 1192.01 and Directive 1013 and Health Care Personnel Influenza Vaccination Forms are available upon request.
- C. Key Control:
 - 1. Door hardware installed in construction doors is to be self-closing and storage function lock, able to receive a BEST 7 pin core and only operable with a key. The VA will install the construction core and issue keys to the contractor's personnel. All construction fences are to be locked with a VA lock in series so VA engineering and police personnel have emergency access at all times. Construction fences are to be kept locked at all times to prevent access by patients and VA unauthorized staff. Contractor is to provide means of egress from the site that keeps the site secure from the exterior. Keys to necessary construction areas can be

6-23-22

checked out with the approval of the COR. The contractor is to give a minimum of 15 business days' notice for security approval for areas that need to be entered for construction purposes.

- The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.
- 3. VA construction core keys will be issued to the contractor as deemed necessary by the COR. All keys must be returned when no longer needed or upon completion of the contract. There will be a \$25 charge for each key not returned at the end of the contract. Should VA security be compromised as a result of failure to return a key(s), there will be an additional charge to the contractor of \$25 for each door re-cored. There will be a \$75 charge for any VA padlocks not returned by the contractor.
- D. Document Control:
 - Before starting any work, the General Contractor/Subcontractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.

6-23-22

- These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- E. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 5 business days before the date and time of access. Contractor shall maintain a list of vehicles of all employees (general contractor and subcontractors) working on their site. List shall include employee name, vehicle make, model, color and license plate number.
 - 2. Ten parking permits shall be issued for General Contractor and subcontractor for parking in the east contractor lot. This lot is gravel, with minimum maintenance. No overnight parking of contractor vehicles allowed in this lot. No equipment and/or materials are allowed in this lot.

6-23-22

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. This includes crossing curbs and other features when temporary roads and pedestrian walk ways are used. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be as shown on the drawings.
- E. Workmen are subject to rules of Health Care System applicable to their conduct.

6-23-22

- F. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction materials, debris, standing construction equipment and vehicles at all times.
- G. Execute work so as to interfere as little as possible with the normal functioning of the Health Care System as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. The Contractor shall notify the COR prior to the use of equipment and tools that transmit vibrations and noises that can be either felt or heard outside the work site (core drilling, chipping hammer, jack hammer etc.). COR approval to use such equipment and tools shall be obtained in advance, not less than 10 business days prior to the use of such tools, in order to allow advance coordination with health care staff. Contractor to include pricing in the offer for executing this work off hours, before 8am and/or after 4:30 pm or as indicated in the construction documents. This applies to all VA occupied space and any occupied space adjacent to construction activities where noise above 80 decibel or vibration can be felt or heard.
 - 1. Do not store materials and equipment in other than assigned areas.
 - 2. Contractor shall coordinate and utilize just in time material and equipment delivery system. Long term storage of material is not allowed. Storage of common construction material beyond 5 business days is not allowed. Schedule delivery of materials and equipment to construction working areas in quantities sufficient for not more than 5 work days as the staging/storage areas as indicated on the plans allow. Provide unobstructed access to Health Care System areas required to remain in operation.
 - Contractor shall provide unobstructed access to VA Health Care System area required to remain in operation.

6-23-22

H. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by the COR. All such actions shall be coordinated with the COR or Utility Company involved.

1. Whenever it is required that a connection fee be paid to a public utility provider for a new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and no the Contractor.

J. Phasing:

The Health Care System must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled 15 business days in advance and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks.

To insure such executions, Contractor shall furnish the COR with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR 15 business days in advance of the proposed date of starting work in each specific area of site, building or portion thereof. All phasing dates shall be arranged to insure accomplishment of this work in successive phases as detailed in the Construction Drawings for phasing. Unless noted otherwise, 15 business days between each phase is required for VA activations and move relocates. The contractor shall include this coordination time in their schedule.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

6-23-22

Phase I:

- 1. The VA Health Care System must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to, the items identified in Part 1.3
- 2. To ensure such executions, the contractor shall furnish the COR with a schedule of approximate phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, the contractor shall notify the COR two weeks (ten business days) in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such phasing dates to ensure accomplishment of this work in successive phases is mutually agreeable to the COR and Contractor.
- L. Building(s) No. 50 will be occupied during performance of work ; but immediate areas of alterations will be vacated.
 - Continuous and uninterrupted operations of Building No. 50 are critical to the activities of the St. Cloud VA Health Care System. Upon award of the contract and prior to starting on-site activities the contractor shall meet with the VA/COR to develop an understanding of Building No. 50 operations and develop a plan for performing work in proximity to ongoing operations without impeding them. The plan, to be approved by the VA/COR, is to include, but not be limited to:
 - Means and methods of protecting existing building components and equipment during demolition and construction.
 - 3. Schedule of power interruptions to equipment and utilities.

6-23-22

- Provision for temporary power as required during the installation of new equipment.
- 5. Electrical outages that will require a steam outage will be scheduled between the months of May and August. Outages during April and September will be considered by the VA/COR based on weather conditions and campus heat load.
- 6. Other work as described in the contract documents.
- 7. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Health Care System's operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Health Care System operations will continue during the construction period.
- M. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, 2.1m (seven feet) minimum height, around the construction area(s) indicated on the drawings or as required confining all construction activities and staged materials, equipment etc. All fences designed and inteneded to run parallel to sidewalks and roadways shall be atleast 5' away from the edge/shoulder of sidewalks and/or roadways. Provide vehicle and "man gate" (s) for access with necessary hardware, including hasps and padlocks. The "man gate"(s) shall have panic hardware installed on the gate to allow emergency egress from the construction staging area(s) and construction work zone(s) to the public way. Contractor must provide hardware on gate to provide exit ability of contractor's staff and not allow access to unauthorized persons at the facility. An

exterior grade metal door and frame (with appropriate hardware per Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

6-23-22

ingress & egress requirements) professionally and securely installed into the fence assembly can be an alternative to "man gate (s)". VA engineering staff must have the ability to access this gate at any time. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one inch) above grade. Access to the contractors' staging area and/or work site shall remain secure at all times. Secure is defined as locked to prevent unauthorized entrance to the construction site or during times of entrance or delivery, a construction representative shall be within 10 yards of the gate, monitoring the gate to prevent unauthorized access. Removal of construction fence shall be coordinated in advance with the COR.

- N. When a building or part of a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - Contractor shall maintain a minimum temperature of 40 degrees F at all times, except as otherwise specified.
 - 2. Contractor shall maintain in code compliant operating condition and provide any temporary material and equipment for existing fire protection and alarm equipment until the final systems are operational. During renovation the contractor shall alter the existing and/or install a temporary fire sprinkler system, compliant with NFPA to be used until the final system is opporational. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with VA's Fire Protection System Representative whichever will be required to respond to an alarm from Contractor's employee or watchman.
- O. Utilities Services: Maintain existing utility services for Health Care System at all times. Not all details will be shown on the construction plan. Contractor shall request any additional information prior to bid Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

6-23-22

if needed, contractor shall field verify electrical, HVAC, water, sewer and life systems in project area to provide material and equipment to maintain existing utilities for construction, life safety and operations of adjacent/impacted patients and/or staff. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, the Contractor shall coordinate in advance with the COR and receive COR approval to proceed prior to any such cuts or caps. The Contractor shall coordinate with the COR and the Utility Company when applicable. Utility pathways no longer used shall be removed back to the common source (main, branch, panel, junction box, etc).

1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without 15 business day notice and prior approval of the COR. No "HOT TAPPING" of any utility service other than storm or sanitary utilities is allowed unless under extreme circumstances. If these circumstances are determined appropriate and approved by the Chief Engineer, all work must follow Facilities Management Memorandum 23 "Hot Tapping Procedures". All services under work shall be isolated and all energy released before work begins. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Health Care System Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

6-23-22

- 2. Contractor shall submit a request to interrupt any such services to the COR, in writing, 15 business days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption. The contractor will identify the detailed work activity plan related including a contingency plan with this request. The request shall be submitted to the COR via the RFI process.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Health Care System. Interruption time approved by Health Care System may occur at other than Contractor's normal working hours.
- 4. Major interruptions (any utility systems affecting operations of the Health Care System, i.e. power, water, steam, heating, cooling etc outside of the immediate construction work site) of any system must be requested, in writing, at least 15 business days prior to the desired time and shall be performed as directed by the COR.
- 5. In case of a contract construction emergency, service will be interrupted on approval of the COR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- P. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like (including hangers and all supports) shall be removed back to the common source (panels, main lines, branch lines, etc).
- Q. To minimize interference of construction activities with flow of Health Care System traffic, comply with the following:

6-23-22

- Keep roads, walks and entrances to grounds/parking/occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times with approval.
- 2. The Contractor shall submit proposed methods and scheduling of required cutting, altering and removal of existing roads, walks and entrances to the COR not less than 15 work days in advance of any such work. Plans for such work must be approved in advance by the COR.
- R. Coordinate the work for this contract with other construction operations and notify the COR in advance of scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.
- 1.7 ALTERATIONS
 - A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:
 - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout // affected areas of building.
 - Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
 - Shall note any discrepancies between drawings and existing conditions at site.
 - 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and the COR.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

6-23-22

- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of the COR, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and the COR together shall make a thorough resurvey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

6-23-22

protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are identified by attached tags as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by the COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Health Care System.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

A. The Contractor shall preserve and protect all surfaces including but not limited to asphalt, sidewalks, curbs, structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the

6-23-22

careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound. Any grass that is damaged during construction will have the pre-existing grade restored, be sodded and maintained until the sod is firmly rooted as determined by the COR. Sod will be watered by contractor and may not exceed 4 inches while the contractor is responsible for the sod. Any trees/shrubs not identified for demolition shall remain. The contractor shall protect the existing trees/shrubs from damage by enclosing the dripline area with plastic fence. No material, vehicles and/or equipment shall be stored within this protected area. Tree trimming is not allowed as the trees are considered "historic". Contractors shall make all reasonable efforts to use other methods to not conflict with trees (i.e. shorter/smaller equipment).

B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements. At a minimum, the contractor is to comply with all EPA regulations for protection from storm water pollution that would be caused by construction and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

6-23-22

implement all required safeties to maintain compliance. Also, all wash downs for concrete trucks is to be conducted off site. No containment areas are allowed on site.

D. Contractor shall maintain grounds in and around their construction site including all staging, storage and parking areas assigned to this contract (referred to as construction area). Contractor shall remove debris promptly within construction areas. Contractor shall mow and weed whip the construction areas and weed whip on the public side of their construction fences. Mowing and whipping shall occur on regular basis at all times throughout the active contract to prevent vegetation from exceeding 4" in height. Weed control shall be maintained throughout the construction contract period with a plan approved by the COR to return construction site to the preexisting condition unless stated otherwise.

Contractor shall make all reasonable attempts to prevent tracking or other type of unintentional debris transferring of material. Should this occur, the contractor shall complete clean up the affected areas within 2 hours of the discovery.

Inlet protection bags shall be clear of debris after each rain event. Any erosion control blankets or spikes used shall be biodegradable.

Contractor shall not use a "restricted use" herbicide.

1.10 RESTORATION

A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as shown in the drawings or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without prior written approval of the CO. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

6-23-22

- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).
- 1.11 PHYSICAL DATA (NOT USED)
- 1.12 PROFESSIONAL SURVEYING SERVICES (not used)
- 1.13 LAYOUT OF WORK (NOT USED)
- 1.14 AS-BUILT DRAWINGS
 - A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications (Field coordination, Request For Information, Architectural Supplemental Info, PR's etc). These drawings shall be maintained and protected in a professional manner. All information shall be legiable to a reasonable person.
 - B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for COR review, as often as requested.

6-23-22

- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.
- 1.15 USE OF ROADWAYS
 - A. For hauling, use only established public roads and roads on Health Care System property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.
 - B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.
 - C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.

1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
 - Permission to use each unit or system must be given by the Contracting Officer in writing. Any such equipment shall be installed and maintained in accordance with the written agreement and following provisions

6-23-22

- 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2017 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct. Motors shall not be overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
- 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be reduced to contract specifications or, in the absence of contracting specifications, to at or below manufacturer's specifications for typical installations.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government. The make-up air system and auxiliary equipment must be operated as a complete system and be fully maintained by operating personnel.

6-23-22

- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.
- 1.18 TEMPORARY USE OF EXISTING ELEVATORS
 - A. Contractor will not be allowed the use of existing elevators. Outside type doors and interior stairs shall be used by Contractor for transporting materials and equipment.
- 1.19 TEMPORARY USE OF NEW ELEVATORS (NOT USED)
- 1.20 TEMPORARY TOILETS
 - A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by the COR, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.
- 1.21 AVAILABILITY AND USE OF UTILITY SERVICES
 - A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The Contractor shall carefully conserve all utilities furnished.
 - B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections,

6-23-22

distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.

- C. Contractor shall furnish and install temporary utility meters at Contractor's expense and furnish the Health Care System a monthly record of the Contractor's usage of all furnished utilities including but not limited to electricity, water and steam.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open flame devices including but not limited to 'salamander' is not permitted on St Cloud VA property. Use only indirect heat exchanger heaters. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Health Care System heating distribution system.
 - a. Steam is available at no cost to Contractor. Building must be dried in (weather tight), perimtere completely insulated per design and deemed not wasteful (by Chief Engineer) of VA utilities prior to heating with steam.
 - b. Electric Resistance heat is not allowed.
 - If the contractor elects not to connect to the nearest available steam supply, gas/fuel heaters will be allowed with a submitted plan that is approved by the COR and facility Safety Officer.
 - a. Gas/fuel heaters must be an indirect heat unit with a heat exchanger. The unit must utilize a fresh air intake and exhaust outdoors.
 - b. All gas/fuel is to be supplied by the contractor at contractor's expense.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.

6-23-22

- Obtain electricity by connecting to the Health Care System electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Health Care System water distribution system. Provide reduced pressure backflow preventer at each connection as per code. Water is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes may be cause for revocation (at Contracting Officer's discretion) of use of water from Health Care System's system.
 - 3. Water from the potable water system may not be used for irrigation. Irrigation water is available on campus near the Sauk River pump from Monday through Friday, June through the end of September between the hours of 1pm to 4pm. Contractor shall arrange for transportation of water, and source of water outside of those times.
 - 4. <u>Contractor Water Activities</u> any action in which water is used on a construction site that creates an aerosolized risk (landscape watering, compaction watering, moisture content adjustments, dust mitigation, cleaning, surface preparation, dewatering pumps etc)shall be conducted offhours when patients are not traversing the grounds to prevent risk of legionella impacts. Contractors shall not utilize a method of watering that aerosolizes to create a legionella risk to adjacent patients. The contractors watering activities shall be completed under supervision of an employee of the prime contractor.

6-23-22

- G. Fuel: Natural and LP gas and burner fuel oil required for boiler cleaning, normal initial boiler-burner setup and adjusting, and for performing the specified boiler tests will be furnished by the Government. Fuel required for prolonged boiler-burner setup, adjustments, or modifications due to improper design or operation of boiler, burner, or control devices shall be furnished and paid by the Contractor at Contractor's expense.
- 1.22 NEW TELEPHONE EQUIPMENT (NOT USED)

1.23 TESTS

- A. As per specification section 23 05 93 the contractor shall provide a written testing and commissioning plan complete with component level, equipment level, sub-system level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor shall document the results of the approved plan and submit for approval with the as built documentation.
- B. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.

- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonable period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.
- F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.24 INSTRUCTIONS

- A. Contractor will be provided an electronic copy of the VA equipment log spreadsheet. During the initial start-up, the contractor shall submit the populated spreadsheet to include the following information for each piece of equipment:
 - o Equipment installed
 - o Manufacturer of equipment
 - o Model # of equipment
 - o Serial # of equipment
 - o Location of equipment
 - o Market value of equipment
 - o Purchase date of equipment
 - o Manufacturer warranty end date of equipment

Contractor shall also furnish Maintenance and Operating manuals (hard copies and electronic), completed start-up check lists and verbal instructions when the equipment is activated and as required by the various sections of the specifications and as hereinafter specified.

B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed

6-23-22

guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Training for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until training for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. The Contractor shall coordinate and schedule all training in advance with the COR. Training shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual

requirements. The Department of Veterans Affairs reserves the right to Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

6-23-22

request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications.

- 1.25 GOVERNMENT-FURNISHED PROPERTY (not used)
- 1.26 RELOCATED EQUIPMENT and ITEMS (not used)
- 1.27 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT (not used)
- 1.28 CONSTRUCTION SIGN (not used)
- 1.29 SAFETY SIGN (NOT USED)
- 1.30 PHOTOGRAPHIC DOCUMENTATION
 - A. During the construction period through completion, provide photographic documentation of construction progress and at selected milestones including electronic indexing, navigation, storage and remote access to the documentation, as per these specifications. A minimum of 50 photos per month (for NRM) and 75 photos per month (for Minor) are to be delivered monthly on 2 CD's to the COR. The commercial photographer or the subcontractor used for this work shall meet the following qualifications:
 - Demonstrable minimum experience of three (3) years in operation providing documentation and advanced indexing/navigation systems including a representative portfolio of construction projects of similar type, size, duration and complexity as the Project.
 - Demonstrable ability to service projects throughout North America, which shall be demonstrated by a representative portfolio of active projects of similar type, size, duration and complexity as the Project.
 - B. Photographic documentation elements:
 - Construction progress for all trades shall be tracked at predetermined intervals, but not less than once every thirty (30) calendar days ("Progressions"). Progression documentation shall track both the exterior and interior construction of the building. Exterior Progressions shall track 360 degrees around the site and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

6-23-22

each building. Interior Progressions shall track interior improvements beginning prior to demolition commencing and continuing until Project completion.

1.31 FINAL ELEVATION DIGITAL IMAGES (NOT USED)

1.32 HISTORIC PRESERVATION

Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the COR verbally, and then with a written follow up. The Contractor shall cease work at the point of discovery in order to protect the find from damage, pending direction from the Contracting Officer as to how to proceed.

1.33 REBATE DOCUMENTATION

A. As the VA is involved in rebate programs for installed materials and equipment, the contractor is to provide information to the COR including invoices, information sheets, etc. as required for the government to successfully receive rebates.

1.34 SITE INSPECTIONS

- A. The Government reserves the right to inspect the project site during contractor performance. Inspections shall conform to FAR 52.246-12 and herein described.
- B. Inspections shall be conducted randomly on a daily basis by the assigned COR and/or other Facilities Management (FM) staff members. Once per week project sites may be inspected by Facilities Management team. Work shall continue during these inspections as usual, as these are routine compliance inspections.
- C. Throughout the duration of the project the contractor shall schedule critical milestone inspections and obtain approval from the Contracting Officer and COR in order to proceed with the work.

6-23-22

- 1. At minimum the Contractor shall schedule inspections for any underground, in floor, in wall, above ceiling, concrete, concrete reinforcement, partial final and final inspection work. If any work is covered without inspection, it is the Contractor's responsibility to uncover the work at the Contractors expense for inspection. These is inspections are for the benefit of the Government. It is the contractors responsibility (regardless of an inspection and/or results of an inspection) to comply with the terms of the contract.
 - a. Above ceiling inspections are treated as final inspections for items above the ceiling. All items shall be installed into the ceiling with exception of the acoustical tile or finished surface (sheetrock etc.). Ceiling tile or finished surface required for items to be mounted to (such as speakers) are allowed to be installed prior to inspection. One M&O clearance pre-inspection with appropriate contractor coordination drawings is allowed prior to above ceiling inspection
- 2. Contractor shall request inspection date 15 business days prior to the proposed inspection date. The Government will make all reasonable attempts to schedule inspection within 5 business days of the proposed inspection date. However, an alternate date may be scheduled by the COR. This shall not constitute a delay to the schedule, if within a reasonable time period.
- 3. Written inspection reports will be furnished to the contractor by the Government. In the event there are discrepancies that effect follow on tasks, the Contractor shall not proceed with work without written approval from the Contracting Officer. This inspection log is generic; the specific project may require additional or less inspections depending upon the construction, site location and impacts. Coordinate with COR and Contracting Officer throughout the project for more information. Contracting Officers have the final authority on all punch lists. If the COR chooses to send an informal punch list to the contractor, that punch list is for reference only.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

6-23-22

If the COR chooses to send this information they have at least 5 business days to format and submit to the contractor.

- 4. Inspections by VA and or A/E personnel do not release the contractor from following the contract documents. The contractor shall have all work completed and ready for the requested inspection. The VA reserves the right to deny an inspection due to incomplete, unacceptable work. The contractor cannot claim delays for failure to prepare for requested inspection. All inspection requests must be submitted 15 business days prior to the requested date. Reasonable attempts will be made to accommodate the Contractor's request.
- 5. Should VA personnel identify items that do not meet or exceed the requirements for maintenance and safety clearances it is the contractor's responsibility to remove and reinstall the item(s) at no additional cost to the Government.
- 6. At the start of any Contractor requested inspection, the Contractor shall submit to the COR 3 copies of the Contractor's inspection records. The Contractor shall develop, maintain and document an inspection system acceptable to the Government to ensure that all work performed under the contract conforms to the contract requirements. The Contractor shall maintain complete inspection records documenting deficiencies and corrective actions. The Superintendent shall sign off on each deficiency listed upon completion.

1.35 Project/Phase Occupancy

A. Prior to VA occupancy of any portion of the project the contractor shall provide all training (maintenance of equipment, operation of equipment, lockout/tag out training of equipment), operation manuals, maintenance manuals, safety manuals (including lockout/tag out and permit required confine space forms completed by contractors on the VA format used during construction), as built documents, the VA inspection packet and inspection records kept by the contractors which demonstrate

6-23-22

contract compliance. The contractor will not be granted a time extension and will not be allowed to proceed due to not providing proper documents for the VA to occupy the space.

- 1.36 Contracting Officer Representative Coordination
 - A Contracting Officer Representative (COR) will be onsite while the contract is active. CORs will be available at all times for emergencies. Contractors are to coordinate with the CORs schedule for inspections, coordination, etc. It is the responsibility of the contractor to submit Requests For Information (RFI) within a reasonable time frame. Typical RFI processing duration is 15 - 20 calendar days per RFI, subject to complexity. Contractor has a duty to coordinate upcoming work and seek clarifications in a timely manner to prevent contract delays and diligenty pursue the contract. Contractor shall provide submittals for COR's and/or A/E's review within a reasonable time frame. Typical submittal review process duration is 25 calendar days per submittal, subject to complexity of the submittal.
 - A. For working outside the "regular hours" as defined in the contract, the General Contractor shall give 15 business days' notice to the Contracting Officer and the COR so that arrangements can be made. This notice is separate from any notices required for utility shutdown described in other sections.

1.37 Required Permits

The contractor shall request and coordinate information to obtain the following permits.

A.Storm Water Polution Prevention Plan

- B. Infectious Control Risk Assessment
- C.Excavation/Trenching
- D.Hot Work

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

6-23-22

- E.Lock Out/Tag Out
- F.Confinded Space
- G. Energized Work
 - o Including removing electrical panel covers
- H. Demolition Permit
 - o Will be approved after NFPA 241, ICRA, security, other temporary safety/security measures including approved GEMS measures are installed by the contractor per contract.
- 1.38 GC Supervision
 - A. The contractor shall request and coordinate information to comply with superivision requirements
 - B. The GC shall employee a superinitentant either via contract or via direct employee.
 - C.Each superintendent shall be assigned to only 1 contract/projet for the duration of the period of performance of the contract.
 - D.Each superintendent shall have construction management experience in a healthcare setting.
 - E.Each superintendent shall have ICRA, SWPPP and OSHA 30 certification.
 - F.Each superintendent shall assume reasonability of the construction site under this contract and the safety of those whom enter it.

1.39 Locates

A. The GC shall contract/employ a locate crew for locating public and private utilities on VA grounds. Any locate paint, flags or other locate markers on the VA grounds, not contained in an approved construction fence after 10 business days is consider abandoned. VA will remove locate markers to maintain grounds. It will be the contractors

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

6-23-22

responsibility to relocate the utilities if needed. Damage to existing utilities is subject to repair by the contractor.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

services. These representative samples shall be of similar size and scope.

B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 32 16.15 - 2

06/02/2023

11-01-21

11-01-21

blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

B. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

- Notify the Contractor concerning his actions, opinions, and objections.
- 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.
- C. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.

D. The Complete Project Schedule shall contain all work activities/events required to complete the project, including temporary infection control measures and power interruptions to equipment and utilities.1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRCTION CONTRACTS).

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-21

C. In accordance with FAR 52.236 - 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.

D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
 - d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
 - e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
 - 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-21

- 3. Break up the work into activities/events of a duration no longer than twenty work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than twenty work days.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 32 16.15 - 6

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit an application and certificate for payment using the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 - 83 (PAYMENT UNDER FIXED-PRICED CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
 - 5. Completion percentage for all completed and partially completed activities/events.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01 32 16.15 - 7

11-01-21

- Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and COR for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the COR. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the COR within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-21

11-01-21

reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.

- 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
- The schedule does not represent the actual prosecution and progress of the project.
- When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 - 4 (Changes, and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-21

Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.

- B. Actual delays in activities/events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 - 4 (Changes). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month-by-month basis.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-21

SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

06-21

01 33 23 - 1

- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.
- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and MSDS concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06-21

01 33 23 - 2

1.3 SUBMITTAL REGISTER

- A. The submittal register will list items of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional submittals may be required by the specifications. The Contractor is not relieved from supplying submittals required by the contract documents, but which have been omitted from the submittal register.
- B. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- C. The VA will provide the initial submittal register in electronic format. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA.
- D. The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by Contracting Officer.
- E. The Contractor shall submit formal monthly updates to the submittal register in electronic format. Each monthly update shall document actual submission and approval dates for each submittal.

1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.
- D. All submittals are required to be approved prior to the start of the specified work activity.

1.5 SUBMITTAL PREPARATION

A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01 33 23 - 3

06-21

- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be accepted for expedition of construction effort. Submittal will be returned without review if incomplete.
- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.
- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain the excessive amount of irrelevant or unnecessary data will be returned with review.
- E. Provide a transmittal form for each submittal with the following information:
 - 1. Project title, location and number.
 - 2. Construction contract number.
 - 3. Date of the drawings and revisions.
 - Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal.
 - 5. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
 - When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18A, to indicate resubmission.
 - 7. Product identification and location in project.
- F. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before submitting for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side by side comparison of item being proposed against item specified. Failure to point out deviations will result in the VA requiring removal and replacement of such work at the Contractor's expense.
- G. Stamp, sign, and date each submittal transmittal form indicating action taken.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

06-21

01 33 23 - 4

H. Stamp used by the Contractor on the submittal transmittal form to certify that the submittal meets contract requirements is to be similar to the following:

CONTRACTOR
(Firm Name)
Approved
Approved with corrections as noted on submittal data and/or
SIGNATURE:
TITLE:
DATE:

1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Summary:
 - Shop drawings, test reports, certificates, and manufacturer's literature and data, shall be submitted for approval to Bancroft Architects + Engineers in electronic format (PDF) using an electronic submittal website service designed specifically for transmitting submittals between the construction team, Architect-Engineer, and the VA's Contracting Officer Representative.
 - a) The electronic website service shall be Oracle Primavera SUBMITTAL EXCHANGE.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

06-21

01 33 23 - 5

- The intent of electronic submittals is to expedite the construction process by reducing paperwork, improving information flow, and decreasing turnaround time.
- 3. The electronic submittal process is not intended for color samples, color charts, or physical material samples. Samples must be submitted by the contractor and shipped prepaid.
- B. Procedures:
 - A submittal log will be created in an electronic submittal website service by inserting required submittals listed in individual specification section.
 - Submittal Preparation Contractor may use any or all of the following options:
 - a. Subcontractor and suppliers provide electronic (PDF) submittals to contractor via the submittal exchange website.
 - b. Subcontractor and suppliers provide electronic (PDF) submittals to the contractor via email.
 - c. Subcontractor and suppliers provide paper submittals to scanning service with electronic scans and converts to PDF format.
 - 3. Contractor shall transmit each submittal to Architect-Engineer using submittal website.
 - Architect-Engineer review comments will be made available on submittal website for downloading.
 - 5. Distribution of reviewed submittals to subcontractors and suppliers is the responsibility of the contractor.
 - 6. Submit paper copies of any reviewed submittals not submitted electronically at project closeout for record purposes.
- C. Costs:
 - 1. The VA shall incur the full cost of the electronic submittal exchanging website.
 - 2. Internet Service and Equipment Requirements:
 - a. Email address and internet access at Contractor's main office.

1.7 SAMPLES

A. Submit two sets of physical samples showing range of variation, for each required item.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

06-21

B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.

- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.
- B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

SRE may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06-21

06-21

- D. VA review period is 15 working days for submittals.
- E. VA review period is 10 working days for RFIs.
- F. The VA will return submittals to the Contractor with the following notations:
 - "Approved": authorizes the Contractor to proceed with the work covered.
 - "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
 - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.
 - 4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the reason it is not reviewed. Resubmit submittals after taking appropriate action.

1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

1.12 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06-21

11-01-21

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1	APPLICABLE PUBLICATIONS 2
1.2	DEFINITIONS 3
1.3	REGULATORY REQUIREMENTS 5
1.4	ACCIDENT PREVENTION PLAN (APP) 5
1.5	ACTIVITY HAZARD ANALYSES (AHAs) 11
1.6	PRECONSTRUCTION CONFERENCE 13
1.7	"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" (CP) \dots 14
1.8	TRAINING 15
1.9	INSPECTIONS 16
1.10	ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS 17
1.11	PERSONAL PROTECTIVE EQUIPMENT (PPE) 18
1.12	INFECTION CONTROL 19
1.13	TUBERCULOSIS SCREENING 25
1.14	FIRE SAFETY
1.15	ELECTRICAL
1.16	FALL PROTECTION
1.17	SCAFFOLDS AND OTHER WORK PLATFORMS
1.18	EXCAVATION AND TRENCHES
1.19	CRANES
1.20	CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)
1.21	CONFINED SPACE ENTRY
1.22	WELDING AND CUTTING
1.23	LADDERS
1.24	FLOOR & WALL OPENINGS

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

SECTION 01 35 26 SAFETY REOUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011.....Pre-Project & Pre-Task Safety and Health Planning

- A10.34-2012.....Protection of the Public on or Adjacent to Construction Sites
- A10.38-2013.....Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations
- C. American Society for Testing and Materials (ASTM):
 - E84-2013.....Surface Burning Characteristics of Building Materials
- D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities

E. National Fire Protection Association (NFPA):

10-2018.....Standard for Portable Fire Extinguishers 30-2018.....Flammable and Combustible Liquids Code 51B-2019......Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2020.....National Electrical Code Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

70B-2019.....Recommended Practice for Electrical Equipment Maintenance 70E-2018Standard for Electrical Safety in the Workplace 99-2018.....Health Care Facilities Code 241-2019.....Standard for Safeguarding Construction, Alteration, and Demolition Operations

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification Manual

G. U.S. Nuclear Regulatory Commission

10 CFR 20Standards for Protection Against Radiation

H. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1910Safety and Health Regulations for General Industry

29 CFR 1926Safety and Health Regulations for Construction Industry

I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to powerlines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).

- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:
 - No impact near miss incidents that should be investigated but are not required to be reported to the VA;
 - 2. Minor incident/impact incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;
 - 3. Moderate incident/impact Any work-related injury or illness that results in:
 - a. Days away from work (any time lost after day of injury/illness onset);
 - b. Restricted work;
 - c. Transfer to another job;
 - d. Medical treatment beyond first aid;
 - e. Loss of consciousness;
 - A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
 - 5. Any incident that leads to major equipment damage (greater than \$5000).

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- F. These incidents must be investigated and are required to be reported to the VA;
 - 1 Major incident/impact Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.
- G. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer Representative (COR).

1.4 ACCIDENT PREVENTION PLAN (APP):

A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.

- B. The APP shall be prepared as follows:
 - Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. **SIGNATURE SHEET**. Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - Plan approver (company/corporate officers authorized to obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

concurrence of other applicable corporate and project personnel (Contractor).

- b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor;
 - 2) Contract number;
 - 3) Project name;
 - Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.

d. **RESPONSIBILITIES AND LINES OF AUTHORITIES**. Provide the following:

- A statement of the employer's ultimate responsibility for the implementation of his SOH program;
- Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
- 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
- Requirements that no work shall be performed unless a designated competent person is present on the job site;
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs);

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- 6) Lines of authority;
- Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

 Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.

- Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the Contracting Officer Representative:
 - 1) Exposure data (man-hours worked);
 - 2) Accident investigation reports;
 - 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response;
 - 2) Contingency for severe weather;
 - 3) Fire Prevention;
 - 4) Medical Support;
 - 5) Posting of emergency telephone numbers;
 - 6) Prevention of alcohol and drug abuse;
 - 7) Site sanitation (housekeeping, drinking water, toilets);

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

- 8) Night operations and lighting;
- 9) Hazard communication program;
- 10) Welding/Cutting "Hot" work;
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- 12) General Electrical Safety;
- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 15) Excavation/trenching;
- 16) Asbestos abatement;
- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;
- 27) PreCast Concrete;
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES (15) fifteen calendar

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.

- D. Once accepted by the Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, *Accident Prevention*, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer Representative. Should any severe hazard exposure, i.e., imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with

all engaged in the activity, including the contractor, Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

11-01-21

subcontractor(s), and Government on-site representatives at preparatory
and initial control phase meetings.

- 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
- The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least (15) fifteen calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer Representative.

1.6 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.
- C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within (14) fourteen days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES (15) fifteen calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

11-01-21

include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Contracting Officer Representative that individuals have undergone contractor's safety briefing.

G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - Results of the inspection will be documented with tracking of the identified hazards to abatement.
 - The Contracting Officer Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection.
 - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

 A report of the inspection findings with status of abatement will be provided to the Contracting Officer Representative within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, , or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Contracting Officer Representative determines whether a government investigation will be conducted.
- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent), and provide the report to the Contracting Officer Representative within (5) five calendar days of the accident. The Contracting Officer Representative will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer Representative.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Contracting Officer Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Contracting Officer Representative as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - Hard Hats unless written authorization is given by the Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - Safety glasses unless written authorization is given by the Contracting Officer Representative in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer Representative in circumstances of no foot hazards.
 - Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Contracting Officer Representative. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: Class IV. The required infection control precautions are as follows:
 - 1. Class I requirements (NOT USED)
 - 2. Class II requirements (NOT USED)
 - 3. Class III requirements (NOT USED)
 - 4. Class IV requirements:
 - a. During Construction Work:
 - Obtain permit from the Contracting Officer Representative or Government Designated Authority.
 - 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
- 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

11-01-21

cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.

- 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.5) Seal holes, pipes, conduits, and punctures.
- 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
- All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.
- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative or Government Designated Authority with thorough cleaning by the VA Environmental Services Dept.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
 - Contain construction waste before transport in tightly covered containers.
 - Cover transport receptacles or carts. Tape covering unless solid lid.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- Return permit to the Contracting Officer Representative or Government Designated Authority.
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
 - Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center) Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight
 - d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
 - e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.
- D. Products and Materials:
 - 1. Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
 - 2. Barrier Doors: Self Closing One-hour fire-rated solid core wood in steel frame, painted.
 - 3. Dust proof one-hour fire-rated drywall
 - 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
 - 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
 - Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
 - 7. Disinfectant: Hospital-approved disinfectant or equivalent product
 - 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be established and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-21

Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
- 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust Contract No. 36C26319D0022 Station Project No. 656-19-020

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-21

proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.

- 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.
- I. Final Cleanup:
 - Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
 - Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
 - 3. All new air ducts shall be cleaned prior to final inspection.
- J. Exterior Construction
 - Contractor shall verify that dust will not be introduced into the medical center through intake vents or building openings. HEPA filtration on intake vents is required where dust may be introduced.
 - Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e., vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

- A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.
 - Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
 - 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
 - 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of

work, prepare a plan detailing project-specific fire safety measures, Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116
06/02/2023

11-01-21

including periodic status reports, and submit to Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.

- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
 - Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
 - Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
 - 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.

E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

11-01-21

- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with the Contracting Officer Representative.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to the Contracting Officer Representative.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with the Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with the Contracting Officer Representative.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with the Contracting Officer Representative at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to the Contracting Officer Representative.
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. If required, submit documentation to the Contracting Officer Representative that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

design or operational limitations is energized work permitted. The Contracting Officer Representative or Government Designated Authority with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.

- Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the the Contracting Officer Representative or Government Designated Authority.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the Contracting Officer Representative and discussed with all engaged in the activity,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-21

including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.

E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30- ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E - 2015, Chapter 1, Article 110.4(C)(2).

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart
 P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for determination of the necessity
 Contract No. 36C26319D0022
 Station Project No. 656-19-039
 Bancroft-AE Project No. 18-116

01 35 26 -31

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems Bancroft Architects + Engineers

11-01-21

of an excavation protective system where kneeing, laying in, or stooping within the excavation is required.

- B. All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE - some States and other local jurisdictions require separate state/jurisdictionissued excavation permits). The permit shall have two sections, one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater than 5 feet in depth. Each section of the permit shall be provided to the Contracting Office Representative and/or Facility Safety Officer and/or other Government Designated Authority prior to proceeding with digging or drilling and prior to proceeding with entering the excavation. After completion of the work and prior to opening a new section of an excavation, the permit shall be closed out and provided to the Contracting Officer Representative and/or Facility Safety Officer and/or other Government Designated Authority. The permit shall be maintained onsite and the first section of the permit shall include the following:
 - 1. Estimated start time & stop time
 - 2. Specific location and nature of the work.
 - 3. Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
 - Indication of whether soil or concrete removal to an offsite location is necessary.
 - 5. Indication of whether soil samples are required to determined soil contamination.
 - Indication of coordination with local authority (i.e. "One Call") or contractor's effort to determine utility location with search and survey equipment.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

- 7. Indication of review of site drawings for proximity of utilities to digging/drilling.
- C. The second section of the permit for excavations greater than five feet in depth shall include the following:
 - 1. Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetronmeter will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5 Tons/FT2 - Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 - Type B, greater than 1.5 Tons/FT2 - Type A without condition to reduce to Type B).
 - 2. Indication of selected protective system (sloping/benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
 - Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.
 - 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing sufficient oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems Bancroft Architects + Engineers

- D As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.
 - The planned dig site will be outlined/marked in white prior to locating the utilities.
 - Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
 - 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
 - 4. Digging will not commence until all known utilities are marked.
 - 5. Utility markings will be maintained
- E. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within 3 to 5 feet of identified underground utilities. Exploratory bar or other detection equipment will be utilized as necessary to further identify the location of underground utilities.
- F. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the Contracting Officer Representative and/or Facility Safety Officer and/or other Government Designated Authority 14 days prior to the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems Bancroft Architects + Engineers

11-01-21

scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.

- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Contracting Officer Representative.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Contracting Officer Representative at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

11-01-21

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

11-01-20

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 1

Bancroft Architects + Engineers

Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council https://www.aabc.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org
- AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org
- ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org
- ACI American Concrete Institute http://www.aci-int.net
- ACPA American Concrete Pipe Association http://www.concrete-pipe.org
- ACPPA American Concrete Pressure Pipe Association http://www.acppa.org
- ADC Air Diffusion Council http://flexibleduct.org

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 2

Bancroft Architects + Engineers

- AGA American Gas Association http://www.aga.org
- AGC Associated General Contractors of America http://www.agc.org
- AGMA American Gear Manufacturers Association, Inc. http://www.agma.org
- AH American Hort

https://www.americanhort.org

- AHAM Association of Home Appliance Manufacturers http://www.aham.org
- AIA American Institute of Architects

http://www.aia.org

- AISC American Institute of Steel Construction http://www.aisc.org
- AISI American Iron and Steel Institute http://www.steel.org
- AITC American Institute of Timber Construction https://aitc-glulam.org
- AMCA Air Movement and Control Association, Inc. http://www.amca.org
- ANSI American National Standards Institute, Inc. http://www.ansi.org
- APA The Engineered Wood Association http://www.apawood.org
- ARI Air-Conditioning and Refrigeration Institute http://www.ari.org

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 3

06/02/2023

Bancroft Architects + Engineers

ARPM Association for Rubber Product Manufacturers

https://arpm.com

- ASABE American Society of Agricultural and Biological Engineers https://www.asabe.org
- ASCE American Society of Civil Engineers http://www.asce.org
- ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org
- ASME American Society of Mechanical Engineers http://www.asme.org
- ASSE American Society of Sanitary Engineering International http://www.asse-plumbing.org
- ASTM American Society for Testing and Materials International http://www.astm.org
- AWI Architectural Woodwork Institute https://www.awinet.org
- AWS American Welding Society https://www.aws.org
- AWWA American Water Works Association https://www.awwa.org
- BHMA Builders Hardware Manufacturers Association https://www.buildershardware.com
- BIA The Brick Industry Association http://www.gobrick.com
- CAGI Compressed Air and Gas Institute https://www.cagi.org

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 4

06/02/2023

Bancroft Architects + Engineers

- CGA Compressed Gas Association, Inc. https://www.cganet.com
- CI The Chlorine Institute, Inc. https://www.chlorineinstitute.org
- CISCA Ceilings and Interior Systems Construction Association https://www.cisca.org
- CISPI Cast Iron Soil Pipe Institute https://www.cispi.org
- CLFMI Chain Link Fence Manufacturers Institute https://www.chainlinkinfo.org
- CPA Composite Panel Association

https://www.compositepanel.org

- CPMB Concrete Plant Manufacturers Bureau https://www.cpmb.org
- CRA California Redwood Association http://www.calredwood.org
- CRSI Concrete Reinforcing Steel Institute https://www.crsi.org
- CTI Cooling Technology Institute https://www.cti.org
- DHA Decorative Hardwoods Association

https://www.decorativehardwoods.org

- DHI Door and Hardware Institute https://www.dhi.org
- EGSA Electrical Generating Systems Association http://www.egsa.org

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 5

06/02/2023

Bancroft Architects + Engineers

- EEI Edison Electric Institute https://www.eei.org
- EPA United States Environmental Protection Agency https://www.epa.gov
- ETL ETL Testing Services http://www.intertek.com
- FAA Federal Aviation Administration https://www.faa.gov
- FCC Federal Communications Commission https://www.fcc.gov
- FPS Forest Products Society http://www.forestprod.org
- GANA Glass Association of North America http://www.glasswebsite.com
- FM Factory Mutual Global Insurance https://www.fmglobal.com
- GA Gypsum Association https://gypsum.org
- GSA General Services Administration https://www.gsa.gov
- HI Hydraulic Institute http://www.pumps.org
- ICC International Code Council https://shop.iccsafe.org
- ICEA Insulated Cable Engineers Association https://www.icea.net

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 6

06/02/2023

Bancroft Architects + Engineers

- ICAC Institute of Clean Air Companies http://www.icac.com
- IEEE Institute of Electrical and Electronics Engineers
 https://www.ieee.org\
- IGMA Insulating Glass Manufacturers Alliance

https://www.igmaonline.org

- IMSA International Municipal Signal Association http://www.imsasafety.org
- MBMA Metal Building Manufacturers Association https://www.mbma.com
- MSS Manufacturers Standardization Society of the Valve and Fittings Industry http://msshq.org
- NAAMM National Association of Architectural Metal Manufacturers https://www.naamm.org
- PHCC Plumbing-Heating-Cooling Contractors Association https://www.phccweb.org
- NBS National Bureau of Standards See - NIST
- NBBI The National Board of Boiler and Pressure Vessel Inspectors https://www.nationalboard.org
- NEC National Electric Code See - NFPA National Fire Protection Association
- NEMA National Electrical Manufacturers Association https://www.nema.org
- NFPA National Fire Protection Association https://www.nfpa.org

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 7

06/02/2023

Bancroft Architects + Engineers

- NHLA National Hardwood Lumber Association https://www.nhla.com
- NIH National Institute of Health https://www.nih.gov
- NIST National Institute of Standards and Technology https://www.nist.gov
- NELMA Northeastern Lumber Manufacturers Association, Inc. http://www.nelma.org
- NPA National Particleboard Association (See CPA, Composite Panel Association)
- NSF National Sanitation Foundation http://www.nsf.org
- OSHA Occupational Safety and Health Administration Department of Labor https://www.osha.gov
- PCA Portland Cement Association https://www.cement.org
- PCI Precast Prestressed Concrete Institute https://www.pci.org
- PPI Plastics Pipe Institute https://www.plasticpipe.org
- PEI Porcelain Enamel Institute http://www.porcelainenamel.com
- PTI Post-Tensioning Institute http://www.post-tensioning.org
- RFCI Resilient Floor Covering Institute https://www.rfci.com

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 8

06/02/2023

Bancroft Architects + Engineers

RIS Redwood Inspection Service (See Western Wood Products Association)

https://www.wwpa.org

- SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org
- SDI Steel Door Institute http://www.steeldoor.org
- SJI Steel Joist Institute https://www.steeljoist.org
- SMACNA Sheet Metal & Air-Conditioning Contractors'
 National Association
 https://www.smacna.org
- SSPC The Society for Protective Coatings https://www.sspc.org
- STI Steel Tank Institute https://www.steeltank.com
- SWI Steel Window Institute https://www.steelwindows.com
- TCNA Tile Council of North America

https://www.tcnatile.com

TEMA Tubular Exchanger Manufacturers Association http://www.tema.org

TPI Truss Plate Institute https://www.tpinst.org

UBC The Uniform Building Code (See ICC)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 42 19 - 9

Bancroft Architects + Engineers

- UL Underwriters' Laboratories Incorporated https://www.ul.com
- ULC Underwriters' Laboratories of Canada https://www.ulc.ca
- WCLB West Coast Lumber Inspection Bureau http://www.wclib.org
- WDMA Window and Door Manufacturers Association

https://www.wdma.com

- WRCLA Western Red Cedar Lumber Association https://www.realcedar.com
- WWPA Western Wood Products Association http://www.wwpa.org

- - - E N D - - -

Bancroft Architects + Engineers

02-01-21

SECTION 01 45 00 QUALITY CONTROL

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies requirements for Contractor Quality Control (CQC) for Design-Bid-Build (DBB)projects.

1.2 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
- B. ASTM International (ASTM)
 - D3740 (2012a) Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
 - E329 (2014a) Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction

1.3 SUBMITTALS

Government approval is required for all submittals. CQC inspection reports shall be submitted under this Specification section and follow the [Applicable CQC Control Phase (Preparatory, Initial, or Follow-Up)]: [Applicable Specification section] naming convention.

- 1. Preconstruction Submittals
 - a. Interim CQC Plan
 - b. CQC Plan
- 2. Test Reports
 - a. Verification Statement

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-21

PART 2 PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

Establish and maintain an effective quality control (QC) system. that complies with the FAR Clause 52.246.12 titled "Inspection of Construction". QC consists of plans, procedures, and organization necessary to produce an end product which complies with the Contract requirements. The QC system covers all design and construction operations, both onsite and offsite, and be keyed to the proposed design and construction sequence. The project superintendent will be held responsible for the quality of work and is subject to removal by the Contracting Office or Authorized designee for non-compliance with the quality requirements specified in the Contract. In this context the highest level manager responsible for the overall construction activities at the site, including quality and production is the project superintendent. The project superintendent maintains a physical presence at the site at all times and is responsible for all construction and related activities at the site, except as otherwise acceptable to the Contracting Officer.

3.2 CQC PLAN:

- A. Submit the CQC Plan no later than CO or Designee to determine during Constructability review - 15 days after receipt of Notice to Proceed (NTP) proposed to implement the requirements of the FAR Clause 52.246.12 titled "Inspection of Construction". The Government will consider an Interim CQC Plan for the first 15 days of operation, which must be accepted within 5 business days of NTP. Construction will be permitted to begin only after acceptance of the CQC Plan or acceptance of an Interim plan applicable to the particular feature of work to be started. Work outside of the accepted Interim CQC Plan will not be permitted to begin until acceptance of a CQC Plan or another Interim CQC Plan containing the additional work scope is accepted.
- B. Content of the CQC Plan: Include, as a minimum, the following to cover all design and construction operations, both onsite and offsite,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

including work by subcontractors, designers of record consultants, architects/engineers (A/E), fabricators, suppliers, and purchasing agents:

- A description of the QC organization, including a chart showing lines of authority and acknowledgement that the CQC staff will implement the three phase control system for all aspects of the work specified. Include a CQC System Manager that reports to the project superintendent.
- The name, qualifications (in resume format) duties, responsibilities, and authorities of each person assigned a CQC function.
- 3. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the Contract. Letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities will be issued by the CQC System Manager. Furnish copies of these letters to the Contracting Officer or Authorized designee.
- 4. Procedures for scheduling, reviewing, certifying, and managing submittals including those of subcontractors, designers of record, consultants, A/E's offsite fabricators, suppliers and purchasing agents. These procedures must be in accordance with Section 01 33 23 Shop Drawings, Product Data, and Samples.
- 5. Control, verification, and acceptance of testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities approved by the Contracting Officer or Authorized designee are required to be used)
- Procedures for tracking Preparatory, Initial, and Follow-Up control phases and control, verification, and acceptance tests including documentation.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- Procedures for tracking design and construction deficiencies from identification through acceptable corrective action. Establish verification procedures that identified deficiencies have been corrected.
- 8. Reporting procedures, including proposed reporting formats.
- 9. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks has separate control requirements, and is identified by different trades or disciplines, or it is work by the same trade in a different environment. Although each section of specifications can generally be considered as a definable feature of work, there are frequently more than one definable feature under a particular section. This list will be agreed upon during the Coordination meeting.
- 10. Coordinate schedule work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections and Schedule of Special Inspections.
- C. Acceptance of Plan: Acceptance of the Contractor's plan is required prior to the start of design and construction. Acceptance is conditional and will be predicated on satisfactory performance during the design and construction. The Government reserves the right to require the Contractor to make changes in the CQC Plan and operations including removal of personnel as necessary, to obtain the quality specified.
- D. Notification of Changes: After acceptance of the CQC Plan, notify the Contracting Officer or Authorized designee in writing of any proposed change. Proposed changes are subject to acceptance by the Government prior to implementation by the Contractor.

3.3 COORDINATION MEETING:

After the Preconstruction Conference Post-award Conference before start of design or construction, and prior to acceptance by the Government of the CQC Plan, meet with the Contracting Officer or Authorized designee to discuss the Contractor's quality control system. Submit the CQC Plan a minimum of 5 business days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details must be

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-21 developed, including the forms for recording the CC operations, design activities (if applicable), control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting will be prepared by the Government, signed by both the Contractor and Contracting Officer or Authorized designee and will become a part of the contract file. There can be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings or address deficiencies in the CQC system or procedures which can require corrective action by the Contractor.

3.4 QUALITY CONTROL ORGANIZATION:

A. Personnel Requirements: The requirements for the CQC organization are a Safety and Health Manager, CQC System Manager, a Design Quality Manager (if applicable), and sufficient number of additional qualified personnel to ensure safety and Contract compliance. The Safety and Health Manager shall satisfy the requirements of Specification 01 35 26 Safety Requirements and reports directly to a senior project (or corporate) official independent from the CQC System Manager. The Safety and Health Manager will also serve as a member of the CQC Staff. Personnel identified in the technical provisions as requiring specialized skills to assure the required work is being performed properly will also be included as part of the CQC organization. The Contractor's CQC staff maintains a presence at the site at all times during progress of the work and have complete authority and responsibility to take any action necessary to ensure Contract compliance. The CQC staff will be subject to acceptance by the Contracting Officer or Authorized designee. Provide adequate office space, filing systems, and other resources as necessary to maintain an effective and fully functional CQC organization. Promptly complete and furnish all letters, material submittals, shop drawings submittals, schedules and all other project documentation to the CQC organization. The CQC organization is responsible to maintain these documents and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

records at the site at all times, except as otherwise acceptable to the Government.

- B. CQC System Manager: Identify as CQC System Manager an individual within the onsite work organization that is responsible for overall management of CQC and has the authority to act in all CQC matters for the Contractor. The CQC system Manager is required to be a graduate engineer, graduate architect, or a graduate of construction management, with a minimum of PM or SRE to determine qualifications based on project complexity at construction review. The CQC System Manger is assigned as CQC System Manager but has duties as project superintendent in addition to quality control. Identify in the plan an alternate to serve in the event of the CDQC System Manager's absence. The requirements for the alternate are the same as the CQC System Manager.
- C. CQC Personnel: In addition to CQC personnel specified elsewhere in the contract, provide as part of the CQC organization specialized personnel to assist in the CQC System Manager for the following areas, as applicable: electrical, mechanical, civil, structural, environmental, architectural, materials technician submittals clerk, Commissioning Agent, and low voltage systems. These individuals or specified technical companies are directly employed by the General Contractor and cannot be employed by a supplier or subcontractor on this project; be responsible to the CQC System Manager; be physically present at the construction site during work on the specialized personnel's areas of responsibility; have the necessary education or experience in accordance with the Experience Matrix listed herein. These individuals can perform other duties but need to be allowed sufficient time to perform the specialized personnel's assigned quality controls duties as described in the CQC Plan. A single person can cover more than one area provided that the single person is qualified to perform QC activities in each designated and that workload allows.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 - 01 - 21

Bancroft Architects + Engineers

02-01-21

EXPERIENCE MATRIX

Area Qualifications			
Civil	Graduate Civil Engineer or Construction Manager with 2 years experience in the type of work being performed on this project or technician with 5 years related experience.		
Mechanical	Graduate Mechanical Engineer with 2 years experience or construction professional with 5 years of experience supervising mechanical features of work in the field with a construction company.		
Electrical	Graduate Electrical Engineer with 2 years related experience or construction professional with 5 years of experience supervising electrical features of work in the field with a construction company.		
Structural	Graduate Civil Engineer (with Structural Track or Focus), Structural Engineer, or Construction Manager with 2 years experience or construction professional with 5 years experience supervising structural features of work in the field with a construction company.		
Architectural	Graduate Architect with 2 years experience or construction professional with 5 years of related experience.		
Environmental	Graduate Environmental Engineer with 3 years experience.		
Submittals	Submittal Clerk with 1 year experience.		
Concrete, Pavement, and Soils	Materials Technician with 2 years experience for the appropriate area.		
Testing, Adjusting, and Balancing (TAB)	Specialist must be a member of AABC or an experienced technicaion of the firm certified by the NEBB.		
Design Quality Control Manager	Registered Architect or Professional Engineer		

D. Additional Requirements: In addition to the above experience and education requirements, the CQC System Manager and Alternate CQC System Manager are required to have completed the Construction Quality

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

Management (CQM) for Construction course. If the CQC System Manager does not have a current specification, obtain the CQM for Contractors course identification within 90 days of award. This course is periodically offered by the Naval Facilities Engineering Command and the Army Corps of Engineers. Contact the Contracting Officer or Authorized designee for information on the next scheduled class.

- E. Organizational Changes: Maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer or Authorized designee for acceptance.
- 3.5 **SUBMITTALS AND DELIVERABLES:** Submittals have to comply with the requirements in Section 01 33 23 Shop Drawings, Product Data, and Samples. The CQC organization is responsible for certifying that all submittals and deliverables are in compliance with the contract requirements. When Section 01 91 00 General Commissioning Requirements is included in the contract, the submittals required by the section have to be coordinated with the Section 01 33 23 Shop Drawings, Product Data, and Samples to ensure adequate time is allowed for each type of submittal required.

3.6 CONTROL:

- A. CQC is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control are required to be conducted by the CQC System Manager for each definable feature of the construction work as follows:
 - Preparatory Phase: This phase is performed prior to beginning work on each definable feature of work after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase includes:
 - a. A review of each paragraph of applicable specifications, references codes, and standards. Make available during the preparatory inspection a copy of those sections of referenced codes and standards applicable to that portion of the work to be

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

accomplished in the field. Maintain and make available in the field for use by Government personnel until final acceptance of the work.

- b. Review of the Contract drawings.
- c. Check to assure that all materials and equipment have been tested, submitted, and approved.
- d. Review of provisions that have been made to provide required control inspection and testing.
- e. Review Special Inspections required by Section 01 45 35 Special Inspections, that Statement of Special Inspections and the Schedule of Specials Inspections.
- f. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the Contract.
- g. Examination of required materials, equipment, and sample work to assure that they are on hand conform to approved shop drawings or submitted data, and are properly stored.
- h. Review of the appropriate Activity Hazard Analysis (AHA) to assure safety requirements are met.
- i. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards - contract defined or industry standard if not contract defined - for that feature of work.
- j. Check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer.
- k. Discussion of the initial control phase.
- 1. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the Preparatory control phase. Include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. Document the results of the Preparatory phase actions by separate minutes prepared by the CQC System Manager and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

attach to the daily CQC report. Instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications.

- B. Initial Phase: This phase is accomplished at the beginning of a definable feature of work. Accomplish the following:
 - Check work to ensure that it is in full compliance with contract requirements. Review minutes of the Preparatory meeting.
 - Verify adequacy of controls to ensure full contract compliance. Verify the required control inspection and testing is in compliance with the contract.
 - Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.
 - 4. Resolve all differences.
 - Check safety to include compliance with an upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker.
 - 6. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the initial phase for definable features of work. Prepare separate minutes of this phase by the CQC System Manager and attach to the daily CQC report. Indicate the exact location of initial phase for definable feature of work for future reference and comparison with Follow-Up phases.
 - 7. The initial phase for each definable feature of work is repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met.
 - Coordinate scheduled work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections.
- C. Follow-Up Phase: Perform daily checks to assure control activities, including control testing, are providing continued compliance with contract requirements until the completion of the particular feature of work. Record the checks in the CQC documentation. Conduct final Follow-Up checks and correct all deficiencies prior to the start of additional

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

features of work which may be affected by the deficient work. Do not build upon nor conceal non-conforming work. Coordinate scheduled work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections

D. Additional Preparatory and Initial Phases on the same definable features of work if: the quality ongoing work is unacceptable; if there are changes in the applicable CQC staff, onsite production supervision or work crew; if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop.

3.7 TESTS

- A. Testing Procedure: Perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and acceptance test when specified. Procure the services of a Department of Veteran Affairs approved testing laboratory or establish an approved testing laboratory at the project site. Perform the following activities and record and provide the following data:
 - 1. Verify that testing procedures comply with contract requirements.
 - Verify that facilities and testing equipment are available and comply with testing standards.
 - 3. Check test instrument calibration data against certified standards.
 - Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared.
 - 5. Record results of all tests taken, both passing and failing on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the unique sequential control number identifying the test. If approved by the Contracting Officer or Authorized designee, actual test reports are submitted later with a reference to the test number and date taken. Provide an information copy of tests performed by an offsite or commercial test

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-21

facility directly to the Contracting Officer or Authorized designee. Failure to submit timely test reports as stated results in nonpayment for related work performed and disapproval of the test facility for this Contract.

- B. Testing Laboratories: All testing laboratories must be validated through the procedures contained in Specification section 01 45 29 Testing Laboratory Services.
 - Capability Check: The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt and steel is required to meet criteria detailed in ASTM D3740 and ASTM E329.
 - 2. Capability Recheck: If the selected laboratory fails the capability check, the Contractor will be assessed a charge equal to value of recheck to reimburse the Government for each succeeding recheck of the laboratory or the checking of a subsequently selected laboratory. Such costs will be deducted from the Contract amount due the Contractor.
- C. Onsite Laboratory: The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests, and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government.

3.8 COMPLETION INSPECTION

A. Punch-Out Inspection: Conduct an inspection of the work by the CQC system Manager near the end of the work, or any increment of the work established by a time stated FAR 52.211-10 - Commencement, Prosecution, and Completion of Work, or by the specifications. Prepare and include in the CQC documentation a punch list of items which do not conform to the approved drawings and specifications. Include within the list of deficiencies the estimated date by which the deficiencies will be corrected. Make a second inspection the CQC System Manager or staff to ascertain that all deficiencies have been corrected. Once this is

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

accomplished, notify the Government that the facility is ready for the Government Pre-Final Inspection.

- B. Pre-Final Inspection: The Government will perform the Pre-Final Inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. Ensure that all items on this list have been corrected before notifying the Government, so that a Final Acceptance Inspection with the customer can be scheduled. Correct any items noted on the Pre-Final Inspection in a timely manner. These inspections and any deficiency corrections required by this paragraph need to be accomplished within the time slated for completion of the entire work or any particular increment of the work if the project is divided into increments by separate construction completion dates.
- C. Final Acceptance Inspection: The Contractor's QC Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Authorized designee is required to be in attendance at the Final Acceptance Inspection. Additional Government personnel can also be in attendance. The Final Acceptance Inspection will be formally scheduled by the Contracting Officer's or Authorized designee based upon results of the Pre-Final Inspection. Notify the Contracting Officer through the Resident Engineer office at least 14 days prior to the Final Acceptance Inspection and include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date schedule for the Final Acceptance Inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with FAR Clause 52.246-12 titled "Inspection of Construction".

3.9 DOCUMENTATION

A. Quality Control Activities: Maintain current records providing factual evidence that required QC activities and tests have been performed.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 - 01 - 21

Bancroft Architects + Engineers

Include in these records the work of subcontractors and suppliers on an acceptable form that includes, as a minimum, the following information:

- 1. The name and area of responsibility of the Contractor/Subcontractor
- Operating plant/equipment with hours worked, idle, or down for repair.
- 3. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number.
- 4. Test and control activities performed with results and references to specification/drawing requirements. Identify the Control Phase (Preparatory, Initial, and/or Follow-Up). List deficiencies noted, along with corrective action.
- Quantity of materials received at the site with statement as to acceptability, storage, and reference to specification/drawing requirements.
- Submittals and deliverables reviewed, with Contract reference, by whom, and action taken.
- 7. Offsite surveillance activities, including actions taken.
- Job safety evaluations stating what was checked, results, and instructions or corrective actions.
- Instructions given/received and conflicts in plans and specifications.
- 10. Provide documentation of design quality control activities. For independent design reviews, provide, as a minimum, identification of the Independent Technical Reviewer (ITR) team, the ITR review comments, responses, and the record of resolution of the comments.
- B. Verification Statement: Indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. Cover both conforming and deficient features and include a statement that equipment and materials incorporated in the work and workmanship comply with the Contract. Furnish the original and one copy of these records in report form to the Government daily with 1 week after the date covered by the report, except that reports need not be submitted for days on which no work is

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

performed. As a minimum, prepare and submit on report for every 7 days of no work and on the last day of a no work period. All calendar days need to be accounted for throughout the life of the contract. The first report following a day of no work will be for that day only. Reports need to be signed and dated by the CQC System Manager. Include copies of test reports and copies of reports prepared by all subordinate QC personnel within the CQC System Manager Report.

3.10 SAMPLE FORMS

See form at the end of this document.

3.11 NOTIFICATION OF NONCOMPLIANCE: The Contracting Officer or Authorized designee will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor should take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site will be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Contracting Officer can issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders will be made the subject of claim for extension of time or for excess costs or damages by the Contractor.

--- End of Section ---

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

11-01-18

SECTION 01 45 29 TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by the General Contractor .

1.2 APPLICABLE PUBLICATIONS:

A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

в.	American Association of	State Highway and Transportation Officials	
	(AASHTO):		
	т27-11	Standard Method of Test for Sieve Analysis of	
		Fine and Coarse Aggregates	
	T96-02 (R2006)	Standard Method of Test for Resistance to	
		Degradation of Small-Size Coarse Aggregate by	
		Abrasion and Impact in the Los Angeles Machine	
	Т99-10	Standard Method of Test for Moisture-Density	
		Relations of Soils Using a 2.5 Kg (5.5 lb.)	
		Rammer and a 305 mm (12 in.) Drop	
	T104-99 (R2007)	Standard Method of Test for Soundness of	
		Aggregate by Use of Sodium Sulfate or Magnesium	
		Sulfate	
	T180-10	Standard Method of Test for Moisture-Density	
		Relations of Soils using a 4.54 kg (10 lb.)	
		Rammer and a 457 mm (18 in.) Drop	
	T191-02(R2006)	Standard Method of Test for Density of Soil In-	
		Place by the Sand-Cone Method	
	т310-13	Standard Method of Test for In-place Density	
		and Moisture Content of Soil and Soil-aggregate	
		by Nuclear Methods (Shallow Depth)	
С.	American Concrete Instit	cute (ACI):	
	506.4R-94 (R2004)Guide for the Evaluation of Shotcrete		

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers 11-01-18 D. American Society for Testing and Materials (ASTM): A370-12.....Standard Test Methods and Definitions for Mechanical Testing of Steel Products A416/A416M-10.....Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete C31/C31M-10.....Standard Practice for Making and Curing Concrete Test Specimens in the Field C33/C33M-11a.....Standard Specification for Concrete Aggregates C39/C39M-12.....Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens C109/C109M-11b.....Standard Test Method for Compressive Strength of Hydraulic Cement Mortars C136-06.....Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates C138/C138M-10b.....Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete C140-12.....Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units C143/C143M-10a.....Standard Test Method for Slump of Hydraulic Cement Concrete C172/C172M-10.....Standard Practice for Sampling Freshly Mixed Concrete C173/C173M-10b.....Standard Test Method for Air Content of freshly Mixed Concrete by the Volumetric Method C330/C330M-09.....Standard Specification for Lightweight Aggregates for Structural Concrete C567/C567M-11.....Standard Test Method for Density Structural Lightweight Concrete C780-11.....Standard Test Method for Pre-construction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry C1019-11..... Standard Test Method for Sampling and Testing Grout C1064/C1064M-11.....Standard Test Method for Temperature of Freshly Mixed Portland Cement Concrete Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 01 45 29 - 2

Bancroft Architects + Engineers				
11-01-18 C1077-11cStandard Practice for Agencies Testing Concrete	3			
and Concrete Aggregates for Use in Construction				
and Criteria for Testing Agency Evaluation				
C1314-11aStandard Test Method for Compressive Strength				
of Masonry Prisms				
D422-63(2007)Standard Test Method for Particle-Size Analysis				
of Soils				
D698-07e1Ctandard Test Methods for Laboratory Compaction				
Characteristics of Soil Using Standard Effort				
D1140-00(2006)Standard Test Methods for Amount of Material in				
Soils Finer than No. 200 Sieve				
D1143/D1143M-07e1Standard Test Methods for Deep Foundations				
Under Static Axial Compressive Load				
D1188-07e1Standard Test Method for Bulk Specific Gravity				
and Density of Compacted Bituminous Mixtures				
Using Coated Samples				
D1556-07Standard Test Method for Density and Unit				
Weight of Soil in Place by the Sand-Cone Method				
D1557-09Compaction				
Characteristics of Soil Using Modified Effort				
(56,000ft lbf/ft3 (2,700 KNm/m3))				
D2166-06Standard Test Method for Unconfined Compressive				
Strength of Cohesive Soil				
D2167-08)Standard Test Method for Density and Unit				
Weight of Soil in Place by the Rubber Balloon				
Method				
D2216-10Standard Test Methods for Laboratory				
Determination of Water (Moisture) Content of				
Soil and Rock by Mass				
D2974-07aAsh, and Test Methods for Moisture, Ash, and				
Organic Matter of Peat and Other Organic Soils				
D3666-11Requirements				
for Agencies Testing and Inspecting Road and				
Paving Materials				
D3740-11Requirements for				
Agencies Engaged in Testing and/or Inspection Contract No. 36C26319D0022				
Station Project No. 656-19-039				
Bancroft-AE Project No. 18-116 06/02/2023 01 45 29 - 3	3			
UI 4J 29 - S				

Bancroft Architects + Engineers 11-01-18				
0	f Soil and Rock as used in Engineering			
a	nd Construction			
D6938-10Density and Test Method for In-Place Density and				
Water Content of Soil and Soil-Aggregate by				
N	uclear Methods (Shallow Depth)			
E94-04(2010)S	tandard Guide for Radiographic Examinat	tion		
E164-08Ultrasonic				
Т	esting of Weldments			
E329-11cS	tandard Specification for Agencies Enga	aged in		
C	onstruction Inspection, Testing, or Spe	ecial		
I	nspection			
E543-09S	tandard Specification for Agencies Per	forming		
N	on-Destructive Testing			
E605-93(R2011)Standard Test Methods for Thickness and Density				
0	f Sprayed Fire Resistive Material (SFR	(P		
A	pplied to Structural Members			
E709-08 Particle				
E	xamination			
E1155-96(R2008)Determining FF Floor Flatness and FL Floor				
L	evelness Numbers			
F3125/F3125M-15Standard Specification for High Strength				
S	tructural Bolts, Steel and Alloy Steel,	, Heat		
Т	reated, 120 ksi (830 MPa) and 150 ksi	(1040		
М	Pa) Minimum Tensile Strength, Inch and	Metric		
D	imensions			

E. American Welding Society (AWS):

D1.D1.1M-10.....Structural Welding Code-Steel

1.3 REQUIREMENTS:

A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications. Laboratories engaged in Hazardous Materials Testing shall meet the

requirements of OSHA and EPA. The policy applies to the specific Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 45 29 - 4

Bancroft Architects + Engineers

laboratory performing the actual testing, not just the "Corporate Office."

- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by Contracting Officer's Representative. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of Contracting Officer's Representative to such failure.
- C. Written Reports: Testing laboratory shall submit test reports to Contracting Officer's Representative, Contractor, unless other arrangements are agreed to in writing by the Contracting Officer's Representative. Submit reports of tests that fail to meet construction contract requirements on colored paper.
- D. Verbal Reports: Give verbal notification to Contracting Officer's Representative immediately of any irregularity.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 EARTHWORK:

- A. General: The Testing Laboratory shall provide qualified personnel, materials, equipment, and transportation as required to perform the services identified/required herein, within the agreed to schedule and/or time frame. The work to be performed shall be as identified herein and shall include but not be limited to the following:
 - 1. Observe fill and subgrades during proof-rolling to evaluate suitability of surface material to receive fill or base course. Provide recommendations to the Contracting Officer's Representative regarding suitability or unsuitability of areas where proof-rolling was observed. Where unsuitable results are observed, witness excavation of unsuitable material and recommend to Contracting Officer's Representative extent of removal and replacement of unsuitable materials and observe proof-rolling of replaced areas until satisfactory results are obtained.
 - 2. Provide full time observation of fill placement and compaction and field density testing in building areas and provide full time observation of fill placement and compaction and field density

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 11-01-18

Bancroft Architects + Engineers

testing in pavement areas to verify that earthwork compaction obtained is in accordance with contract documents.

- 3. Provide supervised geotechnical technician to inspect excavation, subsurface preparation, and backfill for structural fill.
- B. Testing Compaction:
 - Determine maximum density and optimum moisture content for each type of fill, backfill and subgrade material used, in compliance with ASTM D1557.
 - 2. Make field density tests in accordance with the primary testing method following ASTM D6938 wherever possible. Field density tests utilizing ASTM D1556, AASHTO T191, or ASTM D2167 shall be utilized on a case-by-case basis only if there are problems with the validity of the results from the primary method due to specific site field conditions. Should the testing laboratory propose these alternative methods, they should provide satisfactory explanation to the Contracting Officer's Representative before the tests are conducted.
 - a. Foundation Wall Backfill: One test per 30 m (100 feet) of each layer of compacted fill but in no case fewer than two tests.
 - b. Pavement Subgrade: One test for each 335 $\rm m^2$ (400 square yards), but in no case fewer than two tests.
 - c. Curb, Gutter, and Sidewalk: One test for each 90 m (300 feet), but in no case fewer than two tests.
 - d. Trenches: One test at maximum 30 m (100 foot) intervals per 1200 mm (4 foot) of vertical lift and at changes in required density, but in no case fewer than two tests.
- C. Fill and Backfill Material Gradation: One test per 20 cubic yards stockpiled or in-place source material. Gradation of fill and backfill material shall be determined in accordance with ASTM D1140.
- D. Testing for Footing Bearing Capacity: Evaluate if suitable bearing capacity material is encountered in footing subgrade.
- E. Testing Materials: Test suitability of on-site and off-site borrow as directed by Contracting Officer's Representative.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-18

Bancroft Architects + Engineers

11-01-18

3.2 FOUNDATION PILES (NOT USED)

3.3 FOUNDATION CAISSONS (NOT USED)

3.4 LANDSCAPING:

- A. Test topsoil for organic materials, pH, phosphate, potash content, and gradation of particles.
 - 1. Test for organic material by using ASTM D2974.
 - 2. Determine percent of silt, sand, clay, and foreign materials such as rock, roots, and vegetation.
- B. Submit laboratory test report of topsoil to Contracting Officer's Representative.

3.5 ASPHALT CONCRETE PAVING:

- A. Aggregate Base Course:
 - Determine maximum density and optimum moisture content for aggregate base material in accordance with AASHTO T180, Method D.
 - 2. Make a minimum of three field density tests on each day's final compaction on each aggregate course in accordance with ASTM D1556.
 - Sample and test aggregate as necessary to insure compliance with specification requirements for gradation, wear, and soundness as specified in the applicable state highway standards and specifications.
- B. Asphalt Concrete:
 - Aggregate: Sample and test aggregates in stock pile and hot-bins as necessary to insure compliance with specification requirements for gradation (AASHTO T27), wear (AASHTO T96), and soundness (AASHTO T104).
 - Temperature: Check temperature of each load of asphalt concrete at mixing plant and at site of paving operation.
 - Density: Make a minimum of two field density tests in accordance with ASTM D1188 of asphalt base and surface course for each day's paving operation.

3.6 SITE WORK CONCRETE:

Test site work concrete including materials for concrete as required in Article CONCRETE of this section.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 45 29 - 7

06/02/2023

Bancroft Architects + Engineers

11-01-18

3.7 POST-TENSIONING OF CONCRETE:

- A. Inspection Prior to Concreting: Inspect tendons, drape of tendons, and anchorage components for compliance prior to concreting.
- B. Concrete Testing: As required in Article, CONCRETE of this section except make three test cylinders representing each area to be tensioned and cylinders shall be cured in same manner as concrete they represent. Make compression test prior to determining minimum specified strength required for post-tensioning.
- C. Post-tensioning: Witness post-tensioning operation and record actual gauge pressures and elongations applied to each tendon.
- D. Submit reports in quadruplicate of the following:
 - 1. Inspection of placement and post-tensioning of all tendons.
 - 2. Size, number, location, and drape of tendons.
 - Calculated elongations, based upon the length, modulus of elasticity, and cross-sectional area of the tendons used.
 - 4. Actual field elongations. Check elongation of tendons within ranges established by manufacturer.
 - 5. Calculated gauge pressure and jacking force applied to each tendon.
 - 6. Actual gauge pressures and jacking force applied to each tendon.
 - 7. Required concrete strength at time of jacking.
 - 8. Actual concrete strength at time of jacking.
 - Do not cut or cover the tendon ends until the Contractor receives the Contracting Officer's Representative written approval of the post-tensioning records.

3.8 CONCRETE:

- A. Batch Plant Inspection and Materials Testing:
 - Perform continuous batch plant inspection until concrete quality is established to satisfaction of Contracting Officer's Representative with concurrence of Contracting Officer and perform periodic inspections thereafter as determined by Contracting Officer's Representative.
 - Periodically inspect and test batch proportioning equipment for accuracy and report deficiencies to Contracting Officer's Representative.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- Sample and test mix ingredients as necessary to insure compliance with specifications.
- 4. Sample and test aggregates daily and as necessary for moisture content. Test the dry rodded weight of the coarse aggregate whenever a sieve analysis is made, and when it appears there has been a change in the aggregate.
- 5. Certify, in duplicate, ingredients and proportions and amounts of ingredients in concrete conform to approved trial mixes. When concrete is batched or mixed off immediate building site, certify (by signing, initialing or stamping thereon) on delivery slips (duplicate) that ingredients in truck-load mixes conform to proportions of aggregate weight, cement factor, and water-cement ratio of approved trial mixes.
- B. Field Inspection and Materials Testing:
 - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing.
 - 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.
 - 3. Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least three cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least three cylinders for any one day's pour for each concrete type. Label each cylinder with an identification number. Contracting Officer's Representative may require additional cylinders to be molded and cured under job conditions.
 - 4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 11-01-18

Bancroft Architects + Engineers

\$11-01-18\$ beginning of each day's pumping operations to determine change in slump.

- 5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.
- 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
- 7. Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
- 8. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
- 9. Verify that specified mixing has been accomplished.
- 10. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:
 - a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.
 - b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 11. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.
- 12. Observe conveying, placement, and consolidation of concrete for conformance to specifications.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 13. Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.
- 14. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 15. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 16. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 17. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 18. Measure concrete flatwork for levelness and flatness as follows:
 - a. Perform Floor Tolerance Measurements $F_{\rm F}$ and $F_{\rm L}$ in accordance with ASTM E1155. Calculate the actual overall F- numbers using the inferior/superior area method.
 - b. Perform all floor tolerance measurements within 48 hours after slab installation and prior to removal of shoring and formwork.
 - c. Provide the Contractor and the Contracting Officer's Representative with the results of all profile tests, including a running tabulation of the overall F_F and F_L values for all slabs installed to date, within 72 hours after each slab installation.
- 19. Other inspections:
 - a. Grouting under base plates.

b. Grouting anchor bolts and reinforcing steel in hardened concrete.C. Laboratory Tests of Field Samples:

 Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by Contracting Officer's Representative. Compile laboratory test reports as follows: Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-18

Bancroft Architects + Engineers

sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used.

- 2. Make weight tests of hardened lightweight structural concrete in accordance with ASTM C567.
- 3. Furnish certified compression test reports (duplicate) to Contracting Officer's Representative. In test report, indicate the following information:
 - a. Cylinder identification number and date cast.
 - b. Specific location at which test samples were taken.
 - c. Type of concrete, slump, and percent air.
 - d. Compressive strength of concrete in MPa (psi).
 - e. Weight of lightweight structural concrete in kg/m^3 (pounds per cubic feet).
 - f. Weather conditions during placing.
 - g. Temperature of concrete in each test cylinder when test cylinder was molded.
 - h. Maximum and minimum ambient temperature during placing.
 - i. Ambient temperature when concrete sample in test cylinder was taken.
 - j. Date delivered to laboratory and date tested.

3.9 REINFORCEMENT:

- A. Review mill test reports furnished by Contractor.
- 3.10 SHOTCRETE (NOT USED)
- 3.11 PRESTRESSED CONCRETE (NOT USED)
- 3.12 ARCHITECTURAL PRECAST CONCRETE (NOT USED)

3.13 MASONRY:

- A. Mortar Tests:
 - 1. Laboratory compressive strength test:
 - a. Comply with ASTM C780.
 - b. Obtain samples during or immediately after discharge from batch mixer.
 - c. Furnish molds with 50 mm (2 inch), 3 compartment gang cube.
 - d. Test one sample at 7 days and 2 samples at 28 days.
 - Two tests during first week of operation; one test per week after initial test until masonry completion.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-18

Bancroft Architects + Engineers

- B. Grout Tests:
 - 1. Laboratory compressive strength test:
 - a. Comply with ASTM C1019.
 - b. Test one sample at 7 days and 2 samples at 28 days.
 - c. Perform test for each 230 m² (2500 square feet) of masonry.
- C. Masonry Unit Tests:
 - 1. Laboratory Compressive Strength Test:
 - a. Comply with ASTM C140.
 - b. Test 3 samples for each 460 m^2 (5000 square feet) of wall area.
- D. Prism Tests: For each type of wall construction indicated, test masonry prisms per ASTM C1314 for each 460 m² (5000 square feet) of wall area. Prepare one set of prisms for testing at 7 days and one set for testing at 28 days.

3.14 STRUCTURAL STEEL:

- A. General: Provide shop and field inspection and testing services to certify structural steel work is done in accordance with contract documents. Welding shall conform to AWS D1.1 Structural Welding Code.
- B. Prefabrication Inspection:
 - Review design and shop detail drawings for size, length, type and location of all welds to be made.
 - 2. Approve welding procedure qualifications either by pre-qualification or by witnessing qualifications tests.
 - 3. Approve welder qualifications by certification or retesting.
 - 4. Approve procedure for control of distortion and shrinkage stresses.
 - 5. Approve procedures for welding in accordance with applicable sections of AWS D1.1.

C. Fabrication and Erection:

- 1. Weld Inspection:
 - a. Inspect welding equipment for capacity, maintenance and working condition.
 - b. Verify specified electrodes and handling and storage of electrodes in accordance with AWS D1.1.
 - c. Inspect preparation and assembly of materials to be welded for conformance with AWS D1.1.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 11-01-18

Bancroft Architects + Engineers

- d. Inspect preheating and interpass temperatures for conformance with AWS D1.1.
- e. Measure 25 percent of fillet welds.
- f. Welding Magnetic Particle Testing: Test in accordance with ASTM E709 for a minimum of:
 - 20 percent of all shear plate fillet welds at random, final pass only.
 - 20 percent of all continuity plate and bracing gusset plate fillet welds, at random, final pass only.
 - 3) 100 percent of tension member fillet welds (i.e., hanger connection plates and other similar connections) for root and final passes.
 - 20 percent of length of built-up column member partial penetration and fillet welds at random for root and final passes.
 - 5) 100 percent of length of built-up girder member partial penetration and fillet welds for root and final passes.
- g. Welding Ultrasonic Testing: Test in accordance with ASTM E164 and AWS D1.1 for 100 percent of all full penetration welds, braced and moment frame column splices, and a minimum of 20 percent of all other partial penetration column splices, at random.
- h. Welding Radiographic Testing: Test in accordance with ASTM E94, and AWS D1.1 for 5 percent of all full penetration welds at random.
- Verify that correction of rejected welds are made in accordance with AWS D1.1.
- j. Testing and inspection do not relieve the Contractor of the responsibility for providing materials and fabrication procedures in compliance with the specified requirements.
- 2. Bolt Inspection:
 - a. Inspect high-strength bolted connections in accordance AISC Specifications for Structural Joints Using ASTM F3125 Bolts.
 - b. Slip-Critical Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in each connection in accordance with AISC Specifications for Structural Joints Using

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-01-18

Bancroft Architects + Engineers

\$11-01-18\$ ASTM F3125 Bolts. Inspect all bolts in connection when one or more are rejected.

- c. Fully Pre-tensioned Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in 25 percent of connections in accordance with AISC Specification for Structural Joints Using ASTM F3125 Bolts. Inspect all bolts in connection when one or more are rejected.
- d. Bolts installed by turn-of-nut tightening may be inspected with calibrated wrench when visual inspection was not performed during tightening.
- e. Snug Tight Connections: Inspect 10 percent of connections verifying that plies of connected elements have been brought into snug contact.
- f. Inspect field erected assemblies; verify locations of structural steel for plumbness, level, and alignment.
- D. Submit inspection reports, record of welders and their certification, and identification, and instances of noncompliance to Contracting Officer's Representative.

3.15 STEEL DECKING (NOT USED)

- A. Provide field inspection of welds of metal deck to the supporting steel, and testing services to insure steel decking has been installed in accordance with contract documents and manufacturer's requirements.
- B. Qualification of Field Welding: Qualify welding processes and welding operators in accordance with "Welder Qualification" procedures of AWS D1.1. Refer to the "Plug Weld Qualification Procedure" in Part 3 "Field Quality Control."
- C. Submit inspection reports, certification, and instances of noncompliance to Contracting Officer's Representative.

3.16 SHEAR CONNECTOR STUDS:

- A. Provide field inspection and testing services required by AWS D.1 to insure shear connector studs have been installed in accordance with contract documents.
- B. Tests: Test 20 percent of headed studs for fastening strength in accordance with AWS D1.1.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

C. Submit inspection reports, certification, and instances of noncompliance to Contracting Officer's Representative.

11-01-18

3.17 SPRAYED-ON FIREPROOFING (NOT USED)

- A. Provide field inspection and testing services to certify sprayed-on fireproofing has been applied in accordance with contract documents.
- B. Obtain a copy of approved submittals from Contracting Officer's Representative.
- C. Use approved installation in test areas as criteria for inspection of work.
- D. Test sprayed-on fireproofing for thickness and density in accordance with ASTM E605.
 - Thickness gauge specified in ASTM E605 may be modified for pole extension so that overhead sprayed material can be reached from floor.
- E. Location of test areas for field tests as follows:
 - Thickness: Select one bay per floor, or one bay for each 930 m² (10,000 square feet) of floor area, whichever provides for greater number of tests. Take thickness determinations from each of following locations: Metal deck, beam, and column.
 - 2. Density: Take density determinations from each floor, or one test from each 930 m² (10,000 square feet) of floor area, whichever provides for greater number of tests, from each of the following areas: Underside of metal deck, beam flanges, and beam web.
- F. Submit inspection reports, certification, and instances of noncompliance to Contracting Officer's Representative.

3.18 TYPE OF TEST:

Approximate Number of Tests Required

A. Earthwork:

Laboratory Compaction Test, Soils: (ASTM D698) 100 Field Density, Soils (AASHTO T191, T205, or T310) 100 Penetration Test, Soils 20

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

	Bancroft Architects + Engineers	11-01-18
Β.	Landscaping:	
	Topsoil Test	20
с.	Aggregate Base:	
	Laboratory Compaction, // (AASHTO T180)// //(ASTM D1557)//	40
	Field Density,//(AASHTO T191)// //(ASTM D1556)//	40
	Aggregate, Base Course Gradation (AASHTO T27)	10
	Wear (AASHTO T96)	10
	Soundness (AASHTO T104)	10
D.	Asphalt Concrete:	
	Field Density, (AASHTO T230)//ASTM D1188//	20
	Aggregate, Asphalt Concrete Gradation (AASHTO T27)	20
	Wear (AASHTO T96)	20
	Soundness (AASHTO T104)	20
Е.	Concrete:	
	Making and Curing Concrete Test Cylinders (ASTM C31)	35
	Compressive Strength, Test Cylinders (ASTM C39)	35
	Concrete Slump Test (ASTM C143)	7
	Concrete Air Content Test (ASTM C173)	7
	Unit Weight, Lightweight Concrete (ASTM C567)	N/A
	Aggregate, Normal Weight: Gradation (ASTM C33)	N/A
	Deleterious Substances (ASTM C33)	N/A
	Soundness (ASTM C33)	N/A
	Abrasion (ASTM C33)	N/A
	Aggregate, Lightweight Gradation (ASTM C330)	N/A
	Deleterious Substances (ASTM C330)	N/A
	Unit Weight (ASTM C330)	N/A
	Flatness and Levelness Readings (ASTM E1155) (number of days)	1
F.	Reinforcing Steel:	
	Tensile Test (ASTM A370)	
	Bend Test (ASTM A370)	
	Mechanical Splice (ASTM A370)	
	nct No. 36C26319D0022 on Project No. 656-19-039	
	MI IIOJECC MO. 030-13-033	

	Bancroft Architects + Engineers	
	Welded Splice Test (ASTM A370)	11-01-18
G.	Shotcrete:	
	Taking and Curing Test Cores (ACI 506)	N/A
	Compressive Strength, Test Cores (ACI 506)	N/A
н.	Prestressed Concrete:	,
	Testing Strands (ASTM A416)	N/A
т	Masonry:	
- •		
	Prism Tests (ASTM C1314)	4
J.	Structural Steel:	
	Ultrasonic Testing of Welds (ASTM E164)	N/A
	Magnetic Particle Testing of Welds (ASTM E709)	10
	Radiographic Testing of Welds (ASTM E94)	N/A
Κ.	Sprayed-On Fireproofing:	
	Thickness and Density Tests (ASTM E605)	N/A

- - - E N D - - -

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.
- C. Definitions of Pollutants:
 - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
 - Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
 - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
 - Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
 - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

of the United States" and would require a permit to discharge water from the governing agency.

- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):33 CFR 328.....Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer's Representative (COR) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Contracting Officer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.

- d. Description of the Contractor's environmental protection personnel training program.
- e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, and air and water quality.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- j. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- k. Inclusion of "best management practices" and methodologies.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

01-01-21 deface, injure, or destroy land resources including trees, shrubs, vines, grasses, topsoil, and landforms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted. Provide erosion control plans, in phases where required.

- Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
- Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
- 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
- 4. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities.
- 5. Manage and control spoil areas on Government property to limit spoil.
- 6. Protect adjacent areas from despoilment by temporary excavations.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- 7. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 9. Handle discarded materials other than those included in the solid waste category as directed by the COR.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.
- D. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Minnesota and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

all times, including weekends, holidays, and hours when work is not in progress.

- 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
- 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
- 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- E. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 meter (50 feet) (dBA):

EARTHMOVING

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 MATERIALS HANDLING

01-01-21

			01-01-21
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.
- F. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21 property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.

G. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

07-01-15

SECTION 01 58 16 TEMPORARY INTERIOR SIGNAGE

PART 1 GENERAL

DESCRIPTION

This section specifies temporary interior signs.

PART 2 PRODUCTS

2.1 TEMPORARY SIGNS

- A. Fabricate from 50 Kg (110 pound) mat finish white paper.
- B. Cut to 100 mm (4-inch) wide by 300 mm (12 inch) long size tag.
- C. Punch 3 mm (1/8-inch) diameter hole centered on 100 mm (4-inch) dimension of tag. Edge of Hole spaced approximately 13 mm (1/2-inch) from one end on tag.
- D. Reinforce hole on both sides with gummed cloth washer or other suitable material capable of preventing tie pulling through paper edge.
- E. Ties: Steel wire 0.3 mm (0.0120-inch) thick, attach to tag with twist tie, leaving 150 mm (6-inch) long free ends.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install temporary signs attached to room door frame or room door knob, lever, or pull for doors on corridor openings.
- B. Mark on signs with felt tip marker having approximately 3 mm (1/8-inch) wide stroke for clearly legible numbers or letters.
- C. Identify room with numbers as designated on floor plans.

3.2 LOCATION

- A. Install on doors that have room, corridor, and space numbers shown.
- B. Doors that do not require signs are as follows:
 - Corridor barrier doors (cross-corridor) in corridor with same number.
 - 2. Folding doors or partitions.
 - 3. Toilet or bathroom doors within and between rooms.
 - 4. Communicating doors in partitions between rooms with corridor entrance doors.
 - 5. Closet doors within rooms.
- C. Replace missing, damaged, or illegible signs.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 58 16 - 1

06/02/2023

04-01-22

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

Contract No. 36C26319D0022

Station Project No. 656-19-039

Bancroft-AE Project No. 18-116

06/02/2023

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. D. Division 1 Sustainability specifications

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

04-01-22

companies that haul, collect, and process recyclable debris from construction projects.

- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.

Contract No. 36C26319D0022 Station Project No. 656-19-039

Bancroft-AE Project No. 18-116

04-01-22

- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Contract Office Representative (COR) a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - a) The names and locations of mixed debris reuse and recycling facilities or sites.
 - b) The names and locations of trash disposal landfill facilities or sites.
 - c) Documentation that the facilities or sites are approved to receive the materials.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 22

- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction
 - 1. Green Building Initiative (GBI): Green Globes for New Construction 2019

1.7 RECORDS

A. Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 04 - 01 - 22

C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

10-01-17

SECTION 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. Obtain approval from Contracting Officer for all changes and substitutions to materials or processes. Proposed changes must meet, or exceed, materials or processes specified.

1.2 RELATED WORK

- A. Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.
- B. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.3 DEFINITIONS

- A. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- B. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.
- C. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- D. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 REFERENCE STANDARDS

- A. Carpet and Rug Institute Green Label Plus program.
- B. U.S. Department of Agriculture BioPreferred program (USDA BioPreferred).
- C. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- D. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- E. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- F. U. S. Department of Energy Federal Energy Management Program (FEMP).
- G. Green Electronic Council EPEAT Program (EPEAT).

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to COR.
- B. Sustainability Action Plan:
 - Submit documentation as required by this section; provide additional copies of typical submittals required under technical sections when sustainable construction requires copies of record submittals.
 - 2. Within 30 days after Preconstruction Meeting provide a narrative plan for complying with requirements stipulated within this section.
 - 3. Sustainability Action Plan must:
 - a. Make reference to sustainable construction submittals defined by this section.
 - b. Address all items listed under PERFORMANCE CRITERIA.
 - c. Indicate individual(s) responsible for implementing the plan.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

¹⁰⁻⁰¹⁻¹⁷

- C. Low Pollutant-Emitting Materials Tracking Spreadsheet: Within 30 days after Preconstruction Meeting provide a preliminary Low Pollutant-Emitting Materials Tracking Spreadsheet. The Low Pollutant-Emitting Materials Tracking Spreadsheet must be an electronic file and include all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.
- D. Construction Indoor Air Quality (IAQ) Management Plan:
 - Not more than 30 days after Preconstruction Meeting provide a Construction IAQ Management Plan as an electronic file including descriptions of the following:
 - a. Instruction procedures for meeting or exceeding minimum requirements of ANSI/SMACNA 008-2008, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling.
 - b. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage.
 - c. Schedule of submission of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials.
 - d. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille.
 - e. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit.
 - f. Instruction procedures and schedule for implementing building flush-out.
- E. Product Submittals:
 - Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and pre-consumer recycled content for products having recycled content (excluding MEP systems equipment and components).
 - 2. Biobased Content: Submit product data for products to be installed or used which are included in any of the USDA BioPreferred program's

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01 81 13 - 3

¹⁰⁻⁰¹⁻¹⁷

10-01-17

product categories. Data to include percentage of biobased content and source of biobased material.

- Low Pollutant-Emitting Materials: Submit product data confirming compliance with relevant requirements for all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.
- For applicable products and equipment, submit product documentation confirming ENERGY STAR label, FEMP certification, WaterSense, and/or EPEAT certification.
- F. Sustainable Construction Progress Reports: Concurrent with each Application for Payment, submit a Sustainable Construction Progress Report to confirm adherence with Sustainability Action Plan.
 - Include narratives of revised strategies for bringing work progress into compliance with plan and product submittal data.
 - 2. Include updated and current Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 3. Include construction waste tracking, in tons or cubic yards, including waste description, whether diverted or landfilled, hauler, and percent diverted for comingled quantities; and excluding landclearing debris and soil. Provide haul receipts and documentation of diverted percentages for comingled wastes.
- G. Closeout Submittals: Within 14 days after Substantial Completion provide the following:
 - Final version of Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed air handling units are used during construction.
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for final filtration media in air handling units.
 - Minimum 18 construction photographs including six photographs taken on three different occasions during construction of ANSI/SMACNA 008-2008, Chapter 3 approaches employed, along with a brief description

of each approach, documenting implementation of IAQ management Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/0

01 81 13 - 4

06/02/2023

10-01-17

measures, such as protection of ducts and on-site stored or installed absorptive materials.

- 5. Flush-out Documentation:
 - a. Product data for filtration media used during flush-out.
 - b. Product data for filtration media installed immediately prior to occupancy.
 - c. Signed statement describing building air flush-out procedures including dates when flush-out was begun and completed and statement that filtration media was replaced after flush-out.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to commencement of Work, schedule and conduct meeting with Contract Officer's Representative (COR) and Architect to discuss the Project Sustainable Action Plan content as it applies to submittals, project delivery, required Construction Indoor Air Quality (IAQ) Management Plan, and other Sustainable Construction Requirements. The purpose of this meeting is to develop a mutual understanding of the Sustainable Construction Requirements and coordination of contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: Status of compliance with Sustainable Construction Requirements of these specifications will be an agenda item at regular job meetings conducted during the course of work at the site.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings, rules in effect on January 1, 2004.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01 81 13 - 5

- F. South Coast Air Quality Management District (SCAQMD) Rule 1168, July 1, 2005 and rule amendment date of January 7, 2005.
- G. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.
- Η.
- Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- J. ASHRAE Standard 52.2-2007.

PART 2 - PRODUCTS

- 2.1 PERFORMANCE CRITERIA
- A. Construction waste diversion from landfill disposal must comprise at least 50 percent of total construction waste, excluding land clearing debris and soil. Alternative daily cover (ADC) does not qualify as material diverted from disposal.
- B. Low Pollutant-Emitting Materials:
 - Adhesives, sealants and sealant primers applied on site within the weatherproofing membrane must comply with VOC limits of SCAQMD Rule 1168:
 - a. Flooring Adhesives and Sealants:
 - 1) Subfloor Adhesives: 50 g/L.
 - 2) Ceramic Tile Adhesives and Grout: 65 g/L.
 - 3) Cove Base Adhesives: 50 g/L.
 - 4) Multipurpose Construction Adhesives: 70 g/L.
 - 5) Porous Material (Except Wood) Substrate: 50 g/L.
 - 6) Wood Substrate: 30 g/L.
 - 7) Architectural Non-Porous Sealant Primer: 250 g/L.
 - 8) Architectural Porous Sealant Primer: 775 g/L.
 - 9) Other Sealant Primer: 750 g/L.
 - 10) Structural Wood Member Adhesive: 140 g/L.
 - 11) Architectural Sealant: 250 g/L.
 - 12) Other Sealant: 420 g/L.
 - b. Non-Flooring Adhesives and Sealants:
 - 1) Drywall and Panel Adhesives: 50 g/L.
 - 2) Multipurpose Construction Adhesives: 70 g/L.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

10-01-17

01 81 13 - 6

- 3) Porous Material (Except Wood) Substrate Adhesive: 50 g/L.
- 4) Wood Substrate Adhesive: 30 g/L.
- 5) Architectural Non-Porous Sealant Primer: 250 g/L.
- 6) Architectural Porous Sealant Primer: 775 g/L.
- 7) Other Sealant Primer: 750 g/L.
- 8) Contact Adhesive: 80 g/L.
- 9) Special Purpose Contact Adhesive: 250 g/L.
- 10) Structural Wood Member Adhesive: 140 g/L.
- 11) Architectural Sealants: 250 g/L.
- 12) Other Sealants: 420 g/L.
- 2. Aerosol adhesives applied on site within the weatherproofing membrane must comply with the following Green Seal GS-36.
 - Aerosol Adhesive, General-Purpose Mist Spray: 65 percent VOCs by weight.
 - b. Aerosol Adhesive, General-Purpose Web Spray: 55 percent VOCs by weight.
 - c. Special-Purpose Aerosol Adhesive (All Types): 70 percent VOCs by weight.
- 3. Paints and coatings applied on site within the weatherproofing membrane must comply with the following criteria:
 - a. VOC content limits for paints and coatings established in Green Seal Standard GS-11.
 - b. VOC content limit for anti-corrosive and anti-rust paints applied to interior ferrous metal substrates of 250 g/L established in Green Seal GC-03.
 - c. Clear wood finishes, floor coatings, stains, primers, sealers, and shellacs applied to interior elements must not exceed VOC content limits established in SCAQMD Rule 1113.
 - d. Comply with the following VOC content limits:
 - 1) Anti-Corrosive/Antirust Paints: 250 g/L.
 - 2) Clear Wood Finish, Lacquer: 550 g/L.
 - 3) Clear Wood Finish, Sanding Sealer: 350 g/L.
 - 4) Clear Wood Finish, Varnish: 350 g/L.
 - 5) Floor Coating: 100 g/L.
 - 6) Interior Flat Paint, Coating or Primer: 50 g/L.

7) Interior Non-Flat Paint, Coating or Primer: 150 g/L. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 10-01-17

01 81 13 - 7

10-01-17

- 8) Sealers and Undercoaters: 200 g/L.
- 9) Stain: 250 g/L.
- 10) Concrete Curing Compounds: 350 g/L.
- 11) Waterproofing Sealers: 250 g/L.
- 12) Low-Solids Coatings: 120 g/L.
- Laminating adhesives used to fabricate on-site and shop-applied composite wood and agrifiber assemblies must not contain added ureaformaldehyde.
- C. Recycled Content:
 - Any products being installed or used that are listed on EPA Comprehensive Procurement Guidelines designated product list must meet or exceed the EPA's recycled content recommendations. The EPA Comprehensive Procurement Guidelines categories include:
 - a. Building insulation.
 - b. Cement and concrete.
 - c. Consolidated and reprocessed latex paint.
 - d. Floor tiles.
 - e. Modular threshold ramps.
 - f. Nonpressure pipe.
 - g. Roofing materials.
 - h. Compost and fertilizer made from recovered organic materials.
 - i. Hydraulic mulch.
 - j. Lawn and garden edging.

D. Biobased Content:

- Materials and equipment being installed or used that are listed on the USDA BioPreferred program product category list must meet or exceed USDA's minimum biobased content threshold. Refer to individual specification sections for detailed requirements applicable to that section.
 - a. USDA BioPreferred program categories include:
 - 1) Adhesive and Mastic Removers.
 - 2) Cleaners.
 - 3) Corrosion Preventatives.
 - 4) Erosion Control Materials.
 - 5) Dust Suppressants.
 - 6) Fertilizers.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

10-01-17

- 7) Floor Cleaners and Protectors.
- 8) Floor Coverings (Non-Carpet).
- 9) Glass Cleaners.
- 10) Hydraulic Fluids.
- 11) Industrial Cleaners.
- 12) Interior Paints and Coatings.
- 13) Mulch and Compost Materials.
- 14) Multipurpose Cleaners.
- 15) Multipurpose Lubricants.
- 16) Packaging Films.
- 17) Paint Removers.
- 18) Concrete Sealers.
- 19) Concrete Stains.
- E. Materials, products, and equipment being installed which fall into a category covered by the WaterSense program must be WaterSense-labeled or meet or exceed WaterSense program performance requirements, unless disallowed for infection control reasons.
- F. Materials, products, and equipment being installed which fall into any of the following product categories must be Energy Star-labeled.
 - Applicable Energy Star product categories as of 09/14/2017 include:
 Water Heaters.
 - b. Electrical:
 - 1) Light Fixtures.
- G. Materials, products, and equipment being installed which fall into any of the following categories must be FEMP-designated. FEMP-designated product categories as of 09/14/2017 include:
 - 1. Boilers (Commercial).
 - 2. Electric Chillers, Air-Cooled (Commercial).
 - 3. Electric Chillers, Water-Cooled (Commercial).
 - 4. Light Emitting Diode (LED) Luminaires.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. Construction Indoor Air Quality Management:
 - During construction, meet or exceed recommended control measures of ANSI/SMACNA 008-2008, Chapter 3.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- Protect stored on-site and installed absorptive materials from moisture damage.
- 3. If permanently installed air handlers are used during construction, filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-1999 (with errata but without addenda). Replace all filtration media immediately prior to occupancy.
- 4. Perform building flush-out as follows:
 - a. After construction ends, prior to occupancy and with interior finishes installed, perform a building flush-out by supplying a total volume of 14000 cu. ft. of outdoor air per sq. ft. of floor area while maintaining an internal temperature of at least 60 degrees Fahrenheit and a relative humidity no higher than 60 percent. OR
 - b. If occupancy is desired prior to flush-out completion, the space may be occupied following delivery of a minimum of 3500 cu. ft. of outdoor air per sq. ft. of floor area to the space. Once a space is occupied, it must be ventilated at a minimum rate of 0.30 cfm per sq. ft. of outside air or design minimum outside air rate determined until a total of 14000 cu. ft./sq. ft. of outside air has been delivered to the space. During each day of flush-out period, ventilation must begin a minimum of three hours prior to occupancy and continue during occupancy.
- 5. Provide construction dust control to comply with SCAQMD Rule 403.

----END----

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

encompass and coordinate the system documentation, equipment startup, control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- 6. Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Resident Engineer as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA Resident Engineer and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the Resident Engineer and Contractor. It is also the practice of the VA that communications

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the Resident Engineer.

- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.
- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and Resident Engineer. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the Resident Engineer and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the Resident Engineer to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or Resident Engineer will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the Resident Engineer of any issues that

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

they deem to constitute a potential contract change prior to acting on these issues.

 Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 32.16.15 PROJECT SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD)
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- D. Section 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS
- E. Section 21 08 00 COMMISSIONING OF FIRE PROTECTION SYSTEMS.
- F. Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- G. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- H. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- С.
- D. The commissioning activities have been developed to support the Green Buildings Initiative's Green Globes rating program and to support delivery of project performance in accordance with the VA requirements developed for the project.

1.5 ACRONYMS

List of Acronyms							
Acronym	Meaning						
A/E	Architect / Engineer Design Team						
AHJ	Authority Having Jurisdiction						
ASHRAE	Association Society for Heating Air Condition and Refrigeration Engineers						
BOD	Basis of Design						

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

AcronymMeaningBSCBuilding Systems CommissioningCCTVClosed Circuit TelevisionCDConstruction DocumentsCMMSComputerized Maintenance Management SystemCOContracting Officer (VA)CORContracting Officer's Representative (see also VA-RE)COBieConstruction Operations Building Information ExchangeCFCConstruction Phase CommissioningCXACommissioning AgentCXACommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCADepartment of Veterans Affairs National CemeteryNCAOperations & MaintenanceOPROwner's Project RequirementsFPCPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVACCVA Medical CenterVAVA Office of Construction and Facilities ManagementVACOVA Central OfficeVA PMVA Project Manager	List of A	cronyms
CCTVClosed Circuit TelevisionCDConstruction DocumentsCMMSComputerized Maintenance Management SystemC0Contracting Officer (VA)C0RContracting Officer's Representative (see also VA-RE)C0BieConstruction Operations Building Information ExchangeCPCConstruction Phase CommissioningCxCommissioning AgentCxACommissioning ManagerCxRCommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryAdministrationMaintenanceNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsFFCPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVADepartment of Veterans AffairsVAMCVA Medical CenterVADepartment of Veterans Affairs	Acronym	Meaning
CDConstruction DocumentsCMMSComputerized Maintenance Management SystemC0Contracting Officer (VA)C0RContracting Officer's Representative (see also VA-RE)C0BieConstruction Operations Building Information ExchangeCPCConstruction Phase CommissioningCXCommissioning AgentCXACommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCADepartment of Veterans Affairs National CemeteryNCAOperations & MaintenanceOFROwner's Project RequirementsFFTPre-Functional TestSDSchematic DesignS0Site ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	BSC	Building Systems Commissioning
CMMSComputerized Maintenance Management SystemC0Contracting Officer (VA)C0RContracting Officer's Representative (see also VA-RE)C0BieConstruction Operations Building Information ExchangeCPCConstruction Phase CommissioningCxCommissioning AgentCxACommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCADepartment of Veterans Affairs National Cemetery AdministrationNEBBNational Environmental Balancing Bureau06MOperations & Maintenance0FTPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAVa Medical CenterVACOVA Central Office	CCTV	Closed Circuit Television
COContracting Officer (VA)CORContracting Officer's Representative (see also VA-RE)COBieConstruction Operations Building Information ExchangeCPCConstruction Phase CommissioningCxCommissioning AgentCxACommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing BureauOGMOperations & MaintenanceOPROwner's Project RequirementsPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVACOVA Central Office	CD	Construction Documents
CORContracting Officer's Representative (see also VA-RE)COBieConstruction Operations Building Information ExchangeCPCConstruction Phase CommissioningCxCommissioning AgentCxACommissioning ManagerCxMCommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCAAdministrationNEBBNational Environmental Balancing BureauO6MOperations & MaintenanceOPROwner's Project RequirementsPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVACVA Office of Construction and Facilities ManagementVACOVA Central Office	CMMS	Computerized Maintenance Management System
COBIEConstruction Operations Building Information ExchangeCPCConstruction Phase CommissioningCxCommissioning AgentCxACommissioning ManagerCxMCommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCADepartment of Veterans Affairs National Cemetery AdministrationNEBBNational Environmental Balancing Bureau0QMOperations & MaintenanceOPROwner's Project RequirementsPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVAOperation for the starsSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Office of Construction and Facilities ManagementVACOVA Central Office	CO	Contracting Officer (VA)
CPCConstruction Phase CommissioningCxCommissioning AgentCxACommissioning ManagerCxRCommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsFFCPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	COR	Contracting Officer's Representative (see also VA-RE)
CxCommissioningCxACommissioning AgentCxMCommissioning ManagerCxRCommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	COBie	Construction Operations Building Information Exchange
CxACommissioning AgentCxMCommissioning ManagerCxRCommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	CPC	Construction Phase Commissioning
CxMCommissioning ManagerCxRCommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing BureauOGMOperations & MaintenanceOPROwner's Project RequirementsPFTPre-Functional TestSDSchematic DesignS0Site ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	Cx	Commissioning
CxRCommissioning RepresentativeDPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationNEBBNational Environmental Balancing Bureau06MOperations & Maintenance0FROwner's Project RequirementsPFCFre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	CxA	Commissioning Agent
DPCDesign Phase CommissioningFPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing Bureau04MOperations & Maintenance0FROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	CxM	Commissioning Manager
FPTFunctional Performance TestGBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing Bureau0&MOperations & Maintenance0PROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	CxR	Commissioning Representative
GBI-GGGreen Building Initiative - Green GlobesHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVACOVA Central Office	DPC	Design Phase Commissioning
HVACHeating, Ventilation, and Air ConditioningHVACHeating, Ventilation, and Air ConditioningLEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	FPT	Functional Performance Test
LEEDLeadership in Energy and Environmental DesignNCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National CemeteryAdministrationAdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	GBI-GG	Green Building Initiative - Green Globes
NCDepartment of Veterans Affairs National CemeteryNCADepartment of Veterans Affairs National Cemetery AdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	HVAC	Heating, Ventilation, and Air Conditioning
NCADepartment of Veterans Affairs National Cemetery AdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVAMCVA Medical CenterVACOVA Central Office	LEED	Leadership in Energy and Environmental Design
NCAAdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVACOVA Central Office	NC	Department of Veterans Affairs National Cemetery
AdministrationNEBBNational Environmental Balancing BureauO&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	NCA	Department of Veterans Affairs National Cemetery
O&MOperations & MaintenanceOPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVACOVA CEFMVACOVA Central Office	11011	Administration
OPROwner's Project RequirementsPFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	NEBB	National Environmental Balancing Bureau
PFCPre-Functional ChecklistPFTPre-Functional TestSDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	0&M	Operations & Maintenance
PFTPre-Functional TestSDSchematic DesignS0Site ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	OPR	Owner's Project Requirements
SDSchematic DesignSOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	PFC	Pre-Functional Checklist
SOSite ObservationTABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	PFT	Pre-Functional Test
TABTest Adjust and BalanceVADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	SD	Schematic Design
VADepartment of Veterans AffairsVAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	SO	Site Observation
VAMCVA Medical CenterVA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	TAB	Test Adjust and Balance
VA CFMVA Office of Construction and Facilities ManagementVACOVA Central Office	VA	Department of Veterans Affairs
VACO VA Central Office	VAMC	VA Medical Center
	VA CFM	VA Office of Construction and Facilities Management
VA PM VA Project Manager	VACO	VA Central Office
	VA PM	VA Project Manager

04-01-22

List of Acronyms						
Acronym	Meaning					
VA-RE	VA Resident Engineer					
USGBC	United States Green Building Council					

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training. Accuracy: The capability of an instrument to indicate the true value of a measured quantity.

Back Check: A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines. **Benchmarks:** Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself.. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

<u>Building Information Modeling (BIM):</u> Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate</u>: The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

<u>CCTV</u>: Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

<u>**COBie:**</u> Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

<u>Commissionability</u>: Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned

<u>Commissioning Agent (CxA)</u>: The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

<u>Commissioning Checklists</u>: Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

<u>Commissioning Design Review</u>: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

<u>Commissioning Issue</u>: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22 the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation). <u>Commissioning Manager (CxM)</u>: A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

<u>Commissioning Plan:</u> A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

<u>Commissioning Process</u>: A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

<u>Commissioning Report</u>: The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

<u>Commissioning Representative (CxR)</u>: An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor.

<u>Commissioning Specifications</u>: The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

<u>Construction Phase Commissioning</u>: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD)</u>: Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC)</u>: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Coordination Drawings</u>: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

Data Logging: The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

Deferred System Test: Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

Design Criteria: A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR. **Design Intent:** The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and

criteria.

Design Narrative: A written description of the proposed design solutions that satisfy the requirements of the OPR.

Design Phase Commissioning (DPC): All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 91 00 - 9

dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Industry Accepted Best Practice: A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

Installation Verification: Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

04-01-22

Lessons Learned Workshop: A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability</u>: A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment. Maintainability also includes components that have readily obtainable repair parts or service.

<u>Manual Test:</u> Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation'). <u>Owner's Project Requirements (OPR):</u> A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

Peer Review: A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

<u>Precision</u>: The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

<u>Pre-Design Phase Commissioning</u>: Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project <u>Pre-Functional Checklist (PFC)</u>: A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing.

<u>Pre-Functional Test (PFT)</u>: An inspection or test that is done before functional testing. PFT's include installation verification and system and component start up tests.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Procedure or Protocol: A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

<u>Range</u>: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated. **<u>Resolution</u>**: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

Special System Inspections: Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

<u>Static Tests</u>: Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

<u>Start Up Tests:</u> Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

<u>Systems Manual</u>: A system-focused composite document that includes all information required for the owners operators to operate the systems. <u>Test Procedure</u>: A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Testing: The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 22

04-01-22

Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC. Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

Training Plan: A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

Trending: Monitoring over a period of time with the building automation system.

<u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

Verification: The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning</u>: Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

<u>Warranty Visit</u>: A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.

в. Т	The	following	systems	will	be	commissioned	as	part	of	this	project:
------	-----	-----------	---------	------	----	--------------	----	------	----	------	----------

Systems To Be Commissioned								
System	Description							
Fire Suppression								
Fire Sprinkler Systems	Wet pipe system, dry pipe system, pre-action							
	system, special agent systems							
Plumbing								
Domestic Water	Booster pumps, backflow preventers, water							
Distribution	softeners, potable water storage tanks							
Domestic Hot Water	Water heaters**, heat exchangers, circulation							
Systems	pumps, point-of-use water heaters*							
HVAC								

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Systems To Be Commissio	Systems To Be Commissioned								
System	Description								
Noise and Vibration	Noise and vibration levels for critical								
Control	equipment such as Air Handlers, Chillers,								
	Cooling Towers, Boilers, Generators, etc. will								
	be commissioned as part of the system								
	commissioning								
Direct Digital Control	Operator Interface Computer, Operator Work								
System**	Station (including graphics, point mapping,								
	trends, alarms), Network Communications								
	Modules and Wiring, Integration Panels. [DDC								
	Control panels will be commissioned with the								
	systems controlled by the panel]								
Chilled Water System**	Chillers (centrifugal, rotary screw, air-								
	cooled), pumps (primary, secondary, variable								
	primary), VFDs associated with chilled water								
	system components, DDC Control Panels								
	(including integration with Building Control								
	System)								
Condenser Water	Cooling Towers, Fluid Coolers, heat								
System**	exchangers/economizers, pumps, VFDs associated								
	with condenser water system components, DDC								
	control panels.								
Steam/Heating Hot	Boilers, boiler feed water system,								
Water System**	economizers/heat recovery equipment,								
	condensate recovery, water treatment, boiler								
	fuel system, controls, interface with facility								
	DDC system.								
HVAC Air Handling	Air handling Units, packaged rooftop AHU,								
Systems**	Outdoor Air conditioning units, humidifiers,								
	DDC control panels								
HVAC	General exhaust, toilet exhaust, laboratory								
Ventilation/Exhaust	exhaust, isolation exhaust, room								
Systems	pressurization control systems								

Systems To Be Commissioned								
System	Description							
HVAC Terminal Unit	VAV Terminal Units, CAV terminal units, fan							
Systems**	coil units, fin-tube radiation, unit heaters							
Humidity Control	Humidifiers, de-humidifiers, controls,							
<mark>Systems</mark>	interface with facility DDC							
Hydronic Distribution	Pumps, DDC control panels, heat exchangers,							
Systems								
Electrical								
Medium-Voltage	Medium-Voltage Switchgear, Medium-Voltage							
Electrical	Switches, Underground ductbank and							
Distribution Systems	distribution, Pad-Mount Transformers, Medium-							
	Voltage Load Interrupter Switches,							
Grounding & Bonding	Witness 3rd party testing, review reports							
Systems								
Electrical System	Review reports, verify field settings							
Protective Device	consistent with Study							
Study								
Low-Voltage	Normal power distribution system, Life-safety							
Distribution System	power distribution system, critical power							
	distribution system, equipment power							
	distribution system, switchboards,							
	distribution panels, panelboards, verify							
	breaker testing results (injection current,							
	etc)							
Lighting & Lighting	Emergency lighting, occupancy sensors,							
Control** Systems	lighting control systems, architectural							
	dimming systems, theatrical dimming systems,							
	exterior lighting and controls							
Table Notes								
** Denotes systems that	. LEED requires to be commissioned to comply							
with the LEED Fundament	al Commissioning pre-requisite.							

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
 - Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - User: Representatives of the facility user and operation and maintenance personnel.
 - 2. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
- 5. Demonstration of operation of systems, subsystems, and equipment.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

that subcontractors comply with the requirements of these specifications.

- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.
 - Participate in meetings to coordinate Systems Functional Performance Testing.
 - Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
 - 8. Provide information to the Commissioning Agent for developing commissioning plan.
 - 9. Participate in training sessions for VA's operation and maintenance personnel.
 - 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 91 00 - 18

C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.

- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents. Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

- A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
 - Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
 - Description of the organization, layout, and content of commissioning documentation (including systems manual) and a

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 22

04-01-22

detailed description of documents to be provided along with identification of responsible parties.

- 3. Identification of systems and equipment to be commissioned.
- 4. Schedule of Commissioning Coordination meetings.
- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:
 - 1. Name and identification code of tested system.
 - 2. Test number.
 - 3. Time and date of test.
 - 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
 - 5. Dated signatures of the person performing test and of the witness, if applicable.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

- 6. Individuals present for test.
- 7. Observations and Issues.
- 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

Commissioning Issues Log will also track the status of unresolved issues.

- 1. Creating an Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.
 - g. Include information that may be helpful in diagnosing or evaluating the issue.
 - h. Note recommended corrective action.
 - i. Identify commissioning team member responsible for corrective action.
 - j. Identify expected date of correction.
 - k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents and those that do not meet requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:

- Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
- 2. Commissioning plan.
- 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
- 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
- 5, Commissioning Issues Log.
- Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.
 - Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.
 - 4. Updated Commissioning Issues Log, including status of unresolved issues.
 - 5. Identification of potential Warranty Claims to be corrected by the Contractor.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:

- Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
- 2. Reference to Final Commissioning Plan.
- 3. Reference to Final Commissioning Report.
- 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
 - Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
 - Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
 - 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

04-01-22 commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.

- 7. Systems Functional Performance Test Procedures: Preliminary stepby-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA Resident Engineer with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.

- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:
 - 1. The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
 - 2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within 30 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 30 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation,

adjustments, and corrections if necessary. The Contractor shall ensure Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

01 91 00 - 27

04 - 01 - 22

04-01-22

that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 91 00 - 28

- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or - 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or - 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.

04-01-22

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Spec Writer's Notes: Edit the following tables to describe the roles and responsibilities for each commissioning team member for each of the commissioning tasks as appropriate for the project.

Construction Ph	Construction Phase			sionir	nt	L = Lead			
		COR =	Contra	P = Participate					
				Representative					
Commissioning F	Roles & Responsibilities	A/E =	Design	Arch	/Engine	eer	R = Review		
		PC = I	Prime C	ontrad	ctor		O = Optional		
		0&M =	Gov't	Facili	Lty O&I	M			
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes		
Meetings	Construction Commissioning Kick Off meeting	L	A	Р	Р	0			
	Commissioning Meetings	L	A	Р	Р	0			
	Project Progress Meetings	P	A	Р	L	0			
	Controls Meeting	L	A	P	P	0			
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.	L	A	P	P	N/A			
Cx Plan & Spec	Final Commissioning Plan	L	A	R	R	0			

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

04-01-22

Construction	Construction Phase				CxA = Commissioning Agent					
		COR =	Contra	P = Participate						
Commissioning Roles & Responsibilities			sentati	A = Approve						
			Desigr	Arch,	/Engir	neer	R = Review			
		PC =	Prime (Contra	ctor		0 = Optional			
		0&M =	Gov ' t	Facil	ity O&	Μ				
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes			
Schedules	Duration Schedule for Commissioning Activities	L	A	R	R	N/A				
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0				
OFR and BOD		_				-				
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0				
Document	TAB Plan Review	L	A	R	R	0				
Reviews	Submittal and Shop Drawing Review	R	A	R	L	0				
	Review Contractor Equipment Startup Checklists	L	A	R	R	N/A				
	Review Change Orders, ASI, and RFI	L	A	R	R	N/A				
Site	Witness Factory Testing	P	A	Р	L	0				
Observations	Construction Observation Site Visits	L	A	R	R	0				
Functional	Final Pre-Functional Checklists	L	A	R	R	0				

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

04-01-22

Construction Phase			Commis	sionir	nt	L = Lead	
		COR =	Contra	cting	P = Participate		
			entati	ve			A = Approve
Commissioning R	oles & Responsibilities	A/E =	Design	Arch/	Engine	eer	R = Review
		PC = P	rime C	ontrac	tor		O = Optional
			Gov ' t	Facili	P		
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Test Protocols	Final Functional Performance Test Protocols	L	A	R	R	0	
Technical	Issues Resolution Meetings	P	A	P	L	0	
Activities							
Reports and	Status Reports	L	A	R	R	0	
Logs	Maintain Commissioning Issues Log	L	A	R	R	0	

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Phas	CxA =	Commiss	L = Lead					
		Contrac entativ	P = Participate					
							A = Approve	
Commissioning R	Commissioning Roles & Responsibilities			A/E = Design Arch/Engineer				
				PC = Prime Contractor				
			O&M = Gov't Facility O&M					
Category	Task Description	CxA	COR	A/E	PC	M&O	Notes	

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

St. Cloud VA Health Care System St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

04	-01	-22

Acceptance Phas	e	CxA =	Commiss	sionin	g Agen	ıt	L = Lead
Commissioning R	coles & Responsibilities	COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M					<pre>P = Participate A = Approve R = Review O = Optional</pre>
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes
Meetings	Commissioning Meetings	L	A	Р	P	0	
	Project Progress Meetings	P	А	Р	L	0	
	Pre-Test Coordination Meeting	L	А	Р	Р	0	
	Lessons Learned and Commissioning Report Review Meeting	L	A	P	Р	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	Р	P	P	0	
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	A	R	R	0	
Schedules	Prepare Functional Test Schedule	L	A	R	R	0	
OPR and BOD	Maintain OPR on behalf of Owner	L	А	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0	
Document Reviews	Review Completed Pre-Functional Checklists	L	A	R	R	0	
	Pre-Functional Checklist Verification	L	А	R	R	0	
	Review Operations & Maintenance Manuals	L	A	R	R	R	

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

04-	01	L-22

Acceptance Phas	;e	CxA = Commissioning Agent					L = Lead
	Roles & Responsibilities	COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M					<pre>P = Participate A = Approve R = Review O = Optional</pre>
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes
	Training Plan Review	L	А	R	R	R	
	Warranty Review	L	A	R	R	0	
	Review TAB Report	L	A	R	R	0	
Site	Construction Observation Site Visits	-	-	_	_		
Observations -	Witness Selected Equipment Startup	L -	A	R	R	0	
	withess Selected Equipment Startup	L	A	R	R	0	
Functional	TAB Verification	L	A	R	R	0	
Test Protocols	Systems Functional Performance Testing	L	A	Р	Р	Р	
	Retesting	L	A	Р	P	Р	
Technical	Issues Resolution Meetings		-	-	-		
Activities	Systems Training	P	A	P	L	0	
	Systems fraining	L	S	R	P	P	
Reports and	Status Reports	L	A	R	R	0	
Logs	Maintain Commissioning Issues Log	L	A	R	R	0	
	Final Commissioning Report	L	A	R	R	R	
	Prepare Systems Manuals	L	A	R	R	R	

04-01-22

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase		CxA =	Commiss	ionin	g Agen	t	L = Lead	
			Contrac entativ	_	Office	r	<pre>P = Participate A = Approve</pre>	
Commissioning F	Roles & Responsibilities		Design	er	R = Review			
		PC = P	rime Co	ontrac	tor		O = Optional	
	= M&O	Gov't E						
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes	
Meetings	Post-Occupancy User Review Meeting	L	A	0	Р	Р		
Site Observations	Periodic Site Visits	L	A	0	0	Р		
Functional	Deferred and/or seasonal Testing	L	A	0	Р	Р		

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

Warranty Phase		CxA =	Commiss	ionin	g Agen	ıt	L = Lead		
Commissioning F	Commissioning Roles & Responsibilities				COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M				
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes		
Test Protocols									
Technical Activities	Issues Resolution Meetings	L	S	0	0	Р			
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	A		R	Р			
Reports and	Final Commissioning Report Amendment	L	A		R	R			
Logs	Status Reports	L	А		R	R			

04-01-22

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

- c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.
- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.
- 3. Sensor and Actuator Calibration
 - a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
 - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.
- 4. Execution of Equipment Startup
 - a. Four weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
 - b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
 - c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
 - d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 04 - 01 - 22

04-01-22

- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.
- C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.4 PHASED COMMISSIONING (NOT USED)

Α.

3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers - Critical, Priority, and Maintenance.
 - Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
 - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station located within the engineer's office. Additionally Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report automatically by the DDC system at the start of each shift. The generated maintenance report will be printed to a printer located within the engineer's office.

- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and commissioning. This network will allow project team members to more effectively program, view, manipulate and test control devices while being in the same room as the controlled device.
- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the Resident Engineer and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the Resident Engineer. Any pretest trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the Resident Engineer, prior to the execution of Systems Functional Performance Testing.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 04-01-22

2. Dynamic plotting - The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.

- 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.
- 4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.

Dual-Path Air Handling Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
OA Temperature	AI	15 Min	24 hours	3 days	N/A					

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

04-01-22

Dual-Path Air Handling Unit Trending and Alarms

Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
RA Temperature	AI	15 Min	24 hours	3 days	N/A		
RA Humidity	AI	15 Min	24 hours	3 days	Р	>60% RH	10 min
Mixed Air Temp	AI	None	None	None	N/A		
SA Temp	AI	15 Min	24 hours	3 days	С	±5°F from SP	10 min
Supply Fan Speed	AI	15 Min	24 hours	3 days	N/A		
Return Fan Speed	AI	15 Min	24 hours	3 days	N/A		
RA Pre-Filter Status	AI	None	None	None	N/A		
OA Pre-Filter Status	AI	None	None	None	N/A		
After Filter Status	AI	None	None	None	N/A		
SA Flow	AI	15 Min	24 hours	3 days	С	±10% from SP	10 min
OA Supply Temp	AI	15 Min	24 hours	3 days	P	±5°F from SP	10 min
RA Supply Temp	AI	15 Min	24 hours	3 days	N/A		
RA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA HW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA Flow	AI	15 Min	24 hours	3 days	Р	±10% from SP	5 min
RA Flow	AI	15 Min	24 hours	3 days	Р	±10% from SP	5 min
Initial UVC Intensity (%)	AI	None	None	None	N/A		
Duct Pressure	AI	15 Min	24 hours	3 days	С	±25% from SP	6 min
CO2 Level	AI	15 Min	24 hours	3 days	Р	±10% from SP	10 min
Supply Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Dual-Path Air Handling Unit Trending and Alarms

Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Return Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 Min
High Static Status	DI	COV	24 hours	3 days	Р	True	1 min
Fire Alarm Status	DI	COV	24 hours	3 days	С	True	5 min
Freeze Stat Level 1	DI	COV	24 hours	3 days	С	True	10 min
Freeze Stat Level 2	DI	COV	24 hours	3 days	С	True	5 min
Freeze Stat Level 3	DI	COV	24 hours	3 days	P	True	1 min
Fire/Smoke Damper Status	DI	COV	24 hours	3 days	P	Closed	1 min
Emergency AHU Shutdown	DI	COV	24 hours	3 days	Р	True	1 min
Exhaust Fan #1 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
Exhaust Fan #2 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
Exhaust Fan #3 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
OA Alarm	DI	COV	24 hours	3 days	С	True	10 min
High Static Alarm	DI	COV	24 hours	3 days	С	True	10 min
UVC Emitter Alarm	DI	COV	24 hours	3 days	Р	True	10 min
CO2 Alarm	DI	COV	24 hours	3 days	Ρ	True	10 min
Power Failure	DI	COV	24 hours	3 days	P	True	1 min
Supply Fan Speed	AO	15 Min	24 hours	3 days	N/A		
Return Fan Speed	AO	15 Min	24 hours	3 days	N/A		
RA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A		
OA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A		
OA HW Valve Position	AO	15 Min	24 hours	3 days	N/A		

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Dual-Path Air	Dual-Path Air Handling Unit Trending and Alarms											
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay					
Supply Fan S/S	DO	COV	24 hours	3 days	N/A							
Return Fan S/S	DO	COV	24 hours	3 days	N/A							
Fire/Smoke Dampers	DO	COV	24 hours	3 days	N/A							
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A							
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A							
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A							
AHU Energy	Calc	1 Hour	30 day	N/A	N/A							

Terminal Unit	(VAV, C	AV, etc.) I	rending and	Alarms			
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Space Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min
Air Flow	AI	15 Min	12 hours	3 days	Ρ	±5°F from SP	10 min
SA Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min
Local Setpoint	AI	15 Min	12 hours	3 days	М	±10°F from SP	60 min
Space Humidity	AI	15 Min	12 hours	3 days	Р	> 60% RH	5 min
Unoccupied Override	DI	COV	12 hours	3 days	M	N/A	12 Hours
Refrigerator Alarm	DI	COV	12 hours	3 days	С	N/A	10 min
Damper Position	AO	15 Minutes	12 hours	3 days	N/A		

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Terminal Unit (VAV, CAV, etc.) Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A					

4-Pipe Fan Coi	4-Pipe Fan Coil Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
SA Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour				
Water Sensor	DI	COV	12 hours	3 days	М	N/A	30 Min				
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Fan Coil ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min				

2-Pipe Fan Coil Unit Trending and Alarms									
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min		

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

2-Pipe Fan Coi	2-Pipe Fan Coil Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
SA Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour				
Water Sensor	DI	COV	12 hours	3 days	М	N/A	30 Min				
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Fan Coil ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min				

Unit Heater Tro	Unit Heater Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
Heating Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Unit Heater ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min				

Steam and Condensate Pumps Trending and Alarms									
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Steam Flow (LB/HR)	AI	15 Minutes	12 hours	3 days	N/A				
Condensate Pump Run Hours	AI	15 Minutes	12 hours	3 days	N/A				

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Steam and Condo	Steam and Condensate Pumps Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Water Meter (GPM)	AI	15 Minutes	12 hours	3 days	N/A						
Electric Meter (KW/H)	AI	15 Minutes	12 hours	3 days	N/A						
Irrigation Meter (GPM)	AI	15 Minutes	12 hours	3 days	N/A						
Chilled Water Flow (TONS)	AI	15 Minutes	12 hours	3 days	N/A						
Condensate Flow (GPM)	AI	15 Minutes	12 hours	3 days	N/A						
High Water Level Alarm	DI	COV	12 hours	3 days	С	True	5 Min				
Condensate Pump Start/Stop	DO	COV	12 hours	3 days	P	Status <> Command	10 min				

Domestic Hot Wa	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Domestic HW Setpoint WH-1	AI	15 Minute	12 Hours	3 days	N/A		
Domestic HW Setpoint WH-2	AI	15 Minute	12 Hours	3 days	N/A		
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	С	> 135 oF	10 Min
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	Р	±5°F from SP	10 Min
Dom. Circ. Pump #1 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Dom. Circ. Pump #2 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Dom. Circ. Pump #1 Start/Stop	DO	COV	12 Hours	3 days	N/A		

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Domestic Hot Water Trending and Alarms									
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Dom. Circ. Pump #2 Start/Stop	DO	COV	12 Hours	3 days	N/A				
Domestic HW Start/Stop	DO	COV	12 Hours	3 days	N/A				

Hydronic Hot W	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
System HWS Temperature	AI	15 min	12 hours	3 days	С	±5°F from SP	10 Min
System HWR Temperature	AI	15 min	12 hours	3 days	М	±15°F from SP	300 Min
HX-1 Entering Temperature	AI	15 min	12 hours	3 days	P	±5°F from SP	10 Min
HX-2 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Leaving Temperature	AI	15 min	12 hours	3 days	P	±5°F from SP	10 Min
System Flow (GPM)	AI	15 min	12 hours	3 days	N/A		
System Differential Pressure	AI	15 min	12 hours	3 days	Р	±10% from SP	8 Min
				3 days			
HW Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 1 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
HW Pump 2 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #1 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Hydronic Hot Wa	Hydronic Hot Water Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Steam Station #1 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station #2 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station #2 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station Bypass Valve Position	AO	15 Min	12 Hours	3 days	N/A						
HW Pump 1 Start/Stop	DO	COV	12 Hours	3 days	N/A						
HW Pump 2 Start/Stop	DO	COV	12 Hours	3 days	N/A						
HWR #1 Valve	DO	COV	12 Hours	3 days	N/A						
HWR #2 Valve	DO	COV	12 Hours	3 days	N/A						

Chilled Water S	Chilled Water System Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Chiller 1 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	P	±5°F from SP	10 Min				
Chiller 1 Flow	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A						

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Chilled Water	System	Trending an	nd Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 2 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5°F from SP	10 Min
Chiller 2 Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Decoupler Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Differential Pressure	AI	15 Minutes	12 Hours	3 days	P	±5% from SP	10 Min
Secondary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Return Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Primary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Secondary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Chilled Water	System	Trending an	d Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Secondary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 1 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Chiller 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 2 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Refrigerant Detector	DI	COV	12 Hours	3 days	С	True	10 Min
Refrigerant Exhaust Fan Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Emergency Shutdown	DI	COV	12 Hours	3 days	P	True	1 Min
Primary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Chilled Water	Chilled Water System Trending and Alarms							
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Secondary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Secondary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Chiller 1 Enable	DO	COV	12 Hours	3 days	N/A			
Chiller 1 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A			
Chiller 2 Enable	DO	COV	12 Hours	3 days	N/A			
Chiller 2 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A			
Refrigerant Exhaust Fan Start / Stop	DO	COV	12 Hours	3 days	N/A			

Condenser Water	Condenser Water System Trending and Alarms							
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Chiller 1 Condenser Entering Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Chiller 1 Condenser Leaving Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Chiller 2 Condenser Entering Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Chiller 2 Condenser Leaving Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Cooling Tower 1 Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A			

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 91 00 - 56

04-01-22

Condenser Water System Trending and Alarms								
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Cooling Tower 1 Return Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Cooling Tower 1 Basin Temp	AI	15 Minutes	12 Hours	3 days	P	< 45 of	10 Min	
Cooling Tower 2 Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Cooling Tower 2 Return Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Cooling Tower 2 Basin Temp	AI	15 Minutes	12 Hours	3 days	P	< 45 of	10 Min	
Condenser Water Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Condenser Water Return Temp	AI	15 Minutes	12 Hours	3 days	N/A			
Outdoor Air Wet Bulb	AI	15 Minutes	12 Hours	3 days	N/A			
Cooling Tower 1 Fan Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min	
Cooling Tower 1 Basin Heat	DI	COV	12 Hours	3 days	N/A			
Cooling Tower 1 Heat Trace	DI	COV	12 Hours	3 days	N/A			
Cooling Tower 2 Fan Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min	
Cooling Tower 2 Basin Heat	DI	COV	12 Hours	3 days	N/A			
Cooling Tower 2 Heat Trace	DI	COV	12 Hours	3 days	N/A			
Chiller 1 Isolation Valve	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min	
Chiller 2 Isolation Valve	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min	
Condenser Water Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min	
Condenser Water Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min	

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Condenser Wate:	Condenser Water System Trending and Alarms								
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Chiller 1 Condenser Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A				
Chiller 2 Condenser By- Pass Valve	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Fan Speed	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 2 Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 2 Fan Speed	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Fan Start / Stop	DO	COV	12 Hours	3 days	N/A				
Cooling Tower 2 Fan Start / Stop	DO	COV	12 Hours	3 days	N/A				
Condenser Water Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A				
Condenser Water Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A				

Steam Boiler System Trending and Alarms								
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Boiler 1 Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min	
Boiler 1 Steam Temperature	AI	15 Minutes	12 Hours	3 days	N/A			
Boiler 1 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A			

04-01-22

Steam Boiler S	ystem I	rending and	l Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Boiler 2 Steam Pressure	AI	15 Minutes	12 Hours	3 days	P	±5% from SP	10 Min
Boiler 2 Steam Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		
System Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min
Boiler 1 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 1 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 1 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Low Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 1 High Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 1 Feed Pump	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 2 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 2 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Low Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 2 High Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 2 Feed Pump	DI	COV	12 Hours	3 days	N/A		
Combustion Damper Status	DI	COV	12 Hours	3 days	Р	Status <> Command	5 min
Condensate Recovery Pump Status	DI	COV	12 Hours	3 days	Р	Status <> Command	5 min

Contract No. 36C26319D0022 Station Project No. 656-19-039

Bancroft-AE Project No. 18-116

04-01-22

Steam Boiler System Trending and Alarms								
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Boiler 1 Feed Pump Start / Stop	DO	COV	12 Hours	3 days	N/A			
Boiler 2 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Combustion Damper Command	DO	COV	12 Hours	3 days	N/A			
Condensate Recovery Pump Start / Stop	DO	COV	12 Hours	3 days	N/A			

Hot Water Boile	er Syst	em Trending	and Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Outside Air Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Entering Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Leaving Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Entering Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Leaving Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Hot Water Boil	er Syst	em Trending	and Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Hot Water Supply Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5 oF from SP	10 Min
Hot Water Return Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Differential Pressure	AI	15 Minutes	12 Hours	3 days	С	±5% from SP	10 Min
Lead Boiler	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 1 Isolation Valve	DI	COV	12 Hours	3 days	N/A		
Boiler 1 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 2 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 2 Isolation Valve	DI	COV	12 Hours	3 days	N/A		
Boiler 2 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Combustion Dampers Open	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Primary Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Primary Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Hot Water Boild	er Syst	em Trending	and Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Secondary Pump 1 Status	DI	COV	12 Hours	3 days	P	Status <> Command	10 min
Secondary Pump 2 Status	DI	COV	12 Hours	3 days	P	Status <> Command	10 min
Primary Pump 1 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Primary Pump 2 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Hot Water System Enable	DO	COV	12 Hours	3 days	N/A		
Combustion Dampers Command	DO	COV	12 Hours	3 days	N/A		
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		

- E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified after submission shall be recorded and resubmitted to the Resident Engineer and Commissioning Agent.
 - 1. Point-to-Point checkout documentation;

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- 04-01-22
- Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
- 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM							
Sensor	Calibration Frequency	O&M Calibration Procedure Reference					
Discharge air temperature	Once a year	Volume I Section D.3.aa					
Discharge static pressure	Every 6 months	Volume II Section A.1.c					

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

AIR HANDLING UNIT AHU-1				
Control Reference	Proportional Constant	Integral Constant	Derivative Constant	Interval
Heating Valve Output	1000	20	10	2 sec.

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance Testing is to demonstrate that each system is operating according to

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 91 00 - 63

the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested.

- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.
- D. Purpose of Test Procedures: The purpose of each specific Systems Functional Performance Test is to verify and document compliance with the stated criteria of acceptance given on the test form. Representative test formats and examples are found in the Commissioning Plan for this project. (The Commissioning Plan is issued as a separate document and is available for review.) The test procedure forms

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

developed by the Commissioning Agent will include, but not be limited to, the following information:

- 1. System and equipment or component name(s)
- 2. Equipment location and ID number
- 3. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
- 4. Date
- 5. Project name
- 6. Participating parties
- 7. A copy of the specification section describing the test requirements
- A copy of the specific sequence of operations or other specified parameters being verified
- 9. Formulas used in any calculations
- 10. Required pretest field measurements
- 11. Instructions for setting up the test.
- 12. Special cautions, alarm limits, etc.
- 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
- 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
- 15. A section for comments.
- 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.
 - Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 22

- 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
- 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
- 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

04-01-22

building equipment and systems, due to these temporary modifications, to their pretest condition.

G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.

> Spec Writer Note: Verify that the following paragraph regarding cost of expanded sample testing is allowed for the specific project. Retain or delete the paragraph as necessary.

- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. Testing Prerequisites: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.

K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
 - When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
- b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 22

04-01-22

required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
 - 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-22

Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's Resident Engineer, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27,

Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:

- 1. Review the Contract Documents.
- 2. Review installed systems, subsystems, and equipment.
- 3. Review instructor qualifications.
- 4. Review instructional methods and procedures.
- 5. Review training module outlines and contents.
- Review course materials (including operation and maintenance manuals).
- Review and discuss locations and other facilities required for instruction.
- Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
- For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 22

04-01-22

At beginning of each training module, record each chart containing learning objective and lesson outline.

- b. Video Format: Provide high quality color DVD color on standard size DVD disks.
- c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
- d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.
- e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.
- D. Quality Assurance:
 - Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
 - Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
 - 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.
- E. Training Coordination:
 - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
 - 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 91 00 - 73

3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.

- F. Instruction Program:
 - Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.
 - b. Intrusion detection systems.
 - c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems.
 - d. Medical equipment, including medical gas equipment and piping.
 - e. Laboratory equipment, including laboratory air and vacuum equipment and piping.
 - f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
 - g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
 - h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
 - i. HVAC instrumentation and controls.
 - j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
 - k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
 - 1. Lighting equipment and controls.
 - m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 04-01-22

01 91 00 - 74

04-01-22

- n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - H, Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
 - 3. Emergencies: Include the following, as applicable:
 - Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
 - 4. Operations: Include the following, as applicable:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 91 00 - 75

04-01-22

- a. Startup procedures.
- b. Equipment or system break-in procedures.
- c. Routine and normal operating instructions.
- d. Regulation and control procedures.
- e. Control sequences.
- f. Safety procedures.
- g. Instructions on stopping.
- h. Normal shutdown instructions.
- i. Operating procedures for emergencies.
- j. Operating procedures for system, subsystem, or equipment failure.
- k. Seasonal and weekend operating instructions.
- 1. Required sequences for electric or electronic systems.
- m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.

04-01-22

e. Review of spare parts needed for operation and maintenance.

- H. Training Execution:
 - Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.
 - 2. Instruction:
 - a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
 - b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - The VA will furnish an instructor to describe VA's operational philosophy.
 - The VA will furnish the Contractor with names and positions of participants.
 - 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
 - Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
 - 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
- I. Demonstration and Training Recording:
 - General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01 91 00 - 77

04-01-22

Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.

- Video Format: Provide high quality color DVD color on standard size DVD disks.
- Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
- 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

----- END -----

DIVISION 02

08-01-17

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of portions of buildings, utilities, other structures shown.

1.2 RELATED WORK:

- A. Demolition and removal of walks, curbs, and on-grade slabs outside buildings to be demolished: Section 31 20 11, EARTH MOVING (SHORT FORM).
- B. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Asbestos Removal: Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- G. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- H. Construction Waste Management: Section 01 74 19 CONSTRUCTION WASTE MANAGEMENT.
- I. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.

- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the VA Health Care System; any damaged items shall be repaired or replaced as approved by the Contracting Officer's Representative. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements.

Provide new supports and reinforcement for existing construction Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 41 00 - 2

06/02/2023

08 - 01 - 17

08-01-17

weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Contracting Officer's Representative approval.

- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS and Section 01 35 26, SAFETY REQUIREMENTS.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

A. Completely demolish and remove structures, including all appurtenances related or connected thereto, as noted below:

1. As required for installation of new utility service lines.

- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the VA Health Care System to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Contracting Officer's Representative. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. Remove and legally dispose of all materials, other than earth to remain as part of project work. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. The removal of hazardous material shall be referred to Hazardous Materials specifications.
- E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Contracting Officer's Representative. When Utility lines are encountered that are not

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

08-01-17

indicated on the drawings, the Contracting Officer's Representative shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Contracting Officer's Representative. Clean-up shall include off the VA Health Care System campus disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

04-01-19

SECTION 02 82 11 TRADITIONAL ASBESTOS ABATEMENT

TABLE OF CONTENTS

1.1	SUMMARY OF THE WORK1
1.1.1	CONTRACT DOCUMENTS AND RELATED REQUIREMENTS1
1.1.2	EXTENT OF WORK1
1.1.3	RELATED WORK
1.1.4	TASKS
1.1.5	CONTRACTORS USE OF PREMISES
1.2	VARIATIONS IN QUANTITY
1.3	STOP ASBESTOS REMOVAL
1.4	DEFINITIONS
1.4.1	GENERAL
1.4.2	GLOSSARY
1.4.3	REFERENCED STANDARDS ORGANIZATIONS10
1.5	APPLICABLE CODES AND REGULATIONS11
1.5.1	GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS11
1.5.2	ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY11
1.5.3	FEDERAL REQUIREMENTS12
1.5.4	STATE REQUIREMENTS12
1.5.5	LOCAL REQUIREMENTS (NOT USED)
1.5.6	STANDARDS
1.5.7	EPA GUIDANCE DOCUMENTS13
1.5.8	NOTICES
1.5.9	PERMITS/LICENSES14
1.5.10) POSTING AND FILING OF REGULATIONS14
1.5.11	L VA RESPONSIBILITIES14
1.5.12	2 EMERGENCY ACTION PLAN AND ARRANGEMENTS14
1.5.13	3 PRE-CONSTRUCTION MEETING15
1.6	PROJECT COORDINATION16
1.6.1	PERSONNEL16
1.7	RESPIRATORY PROTECTION
1.7.1	GENERAL - RESPIRATORY PROTECTION PROGRAM17
1.7.2	RESPIRATORY PROTECTION PROGRAM COORDINATOR17
Contra	act No. 36C26319D0022

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 11 - i

Bancroft Architects + Engineers

		04-01-19
1.7.3	SELECTION AND USE OF RESPIRATORS	17
1.7.4	MINIMUM RESPIRATORY PROTECTION	17
1.7.5	MEDICAL WRITTEN OPINION	18
1.7.6	RESPIRATOR FIT TEST	18
1.7.7	RESPIRATOR FIT CHECK	18
1.7.8	MAINTENANCE AND CARE OF RESPIRATORS	18
1.7.9	SUPPLIED AIR SYSTEMS	18
1.8	WORKER PROTECTION	18
1.8.1	TRAINING OF ABATEMENT PERSONNEL	18
1.8.2	MEDICAL EXAMINATIONS	19
1.8.3	REGULATED AREA ENTRY PROCEDURE	19
1.8.4	DECONTAMINATION PROCEDURE	19
1.8.5	REGULATED AREA REQUIREMENTS	20
1.9	DECONTAMINATION FACILITIES	20
1.9.1	DESCRIPTION	20
1.9.2	GENERAL REQUIREMENTS	20
1.9.3	TEMPORARY FACILITIES TO THE PDF and W/EDF	20
1.9.4	PERSONNEL DECONTAMINATION FACILITY (PDF)	20
1.9.5	WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)	22
1.9.6	WASTE/EQUIPMENT DECONTAMINATION PROCEDURES	23
PART 2	2 - PRODUCTS, MATERIALS AND EQUIPMENT	23
2.1	MATERIALS AND EQUIPMENT	23
2.1.1	GENERAL REQUIREMENTS	23
2.2	MONITORING, INSPECTION AND TESTING	25
2.2.1	GENERAL	25
2.2.2	SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT	26
2.2.3	MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH	27
2.3	ASBESTOS HAZARD ABATEMENT PLAN	27
2.4	SUBMITTALS	
2.4.1	PRE-START MEETING SUBMITTALS	
2.4.2	SUBMITTALS DURING ABATEMENT	
2.4.3	SUBMITTALS AT COMPLETION OF ABATEMENT	
2.5	ENCAPSULANTS	
2.5.1	TYPES OF ENCAPSULANTS	
2.5.2	PERFORMANCE REQUIREMENTS	
Contra	CERTIFICATES OF COMPLIANCE	
	on Project No. 656-19-039 oft-AE Project No. 18-116	06/02/2023
	02 82 11 - ii	

Bancroft Architects + Engineers

	04-01-19
PART 3 - EXECUTION	
3.1 REGULATED AREA PREPARATIONS	
3.1.3.1 DESIGN AND LAYOUT	
3.1.3.2 NEGATIVE AIR MACHINES (HEPA UNITS)	
3.1.3.3 PRESSURE DIFFERENTIAL	
3.1.3.4 MONITORING	
3.1.3.5 AUXILIARY GENERATOR	
3.1.3.6 SUPPLEMENTAL MAKE-UP AIR INLETS	
3.1.3.7 TESTING THE SYSTEM	
3.1.3.8 DEMONSTRATION OF THE NEGATIVE PRESSURE FILTRATIONSYSTEM	
3.1.3.9 USE OF THE NEGATIVE PRESSURE FILTRATION SYSTEM DURING ABATEM OPERATIONS	
3.1.3.10 DISMANTLING THE SYSTEM	
3.1.4 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA	
3.1.4.1 GENERAL	
3.1.4.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA	
3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA	
3.1.4.4 CRITICAL BARRIERS	
3.1.4.5 PRIMARY BARRIERS	
3.1.4.6 SECONDARY BARRIERS (NOT USED)	
3.1.4.7 EXTENSION OF THE REGULATED AREA	
3.1.4.8 FIRESTOPPING (NOT USED)	
3.1.5 SANITARY FACILITIES	
3.1.6 PERSONAL PROTECTIVE EOUIPMENT	
3.1.7 PRE-CLEANING.	
3.1.8 PRE-ABATEMENT ACTIVITIES.	
3.1.8.1 PRE-ABATEMENT MEETING	39
3.1.8.2 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS	
3.1.8.3 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS	
3.2 REMOVAL OF ACM	
3.2.1 WETTING ACM	
3.2.2 SECONDARY BARRIER AND WALKWAYS (NOT USED)	
3.2.3 WET REMOVAL OF ACM	
3.2.4 WET REMOVAL OF AMOSITE (NOT USED)	
3.2.4 WET REMOVAL OF AMOSITE (NOT USED)	
3.3 LOCKDOWN ENCAPSULATION.	
Contract No. 36C26319D0022 Station Project No. 656-19-039	
Bancroft-AE Project No. 18-116	06/02/2023
02 82 11 - iii	

Bancroft Architects + Engineers

	Danciole Michildees + Engineers	04-01-19	
3.3.1	GENERAL		
3.3.2	DELIVERY AND STORAGE	43	
3.3.3	WORKER PROTECTION	43	
3.3.4	ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING (NOT USED)	43	
3.3.5	SEALING EXPOSED EDGES (NOT USED)	43	
3.4	DISPOSAL OF ACM WASTE MATERIALS		
3.4.1	GENERAL		
3.4.2	PROCEDURES		
3.5	PROJECT DECONTAMINATION		
3.5.1	GENERAL		
3.5.2	REGULATED AREA CLEARANCE	45	
3.5.3	WORK DESCRIPTION	45	
3.5.4	PRE-DECONTAMINATION CONDITIONS	45	
3.5.5	FIRST CLEANING	45	
3.5.6	PRE-CLEARANCE INSPECTION AND TESTING	45	
3.5.7	LOCKDOWN ENCAPSULATION OF REGULATED AREA	46	
3.6	FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING	46	
3.6.1	GENERAL	46	
3.6.2	FINAL VISUAL INSPECTION		
3.6.3	FINAL AIR CLEARANCE TESTING		
3.6.4	FINAL AIR CLEARANCE PROCEDURES	46	
3.6.5	CLEARANCE SAMPLING USING PCM		
	CLEARANCE SAMPLING USING TEM - EQUAL TO OR MORE THAN 260LF/160S		
3.6.7	LABORATORY TESTING OF PCM SAMPLES	40	
3.6.8	LABORATORY TESTING OF TEM SAMPLES (NOT USED)		
	LABORATORY TESTING OF BULK SAMPLES (NOT		
	· · · · · · · · · · · · · · · · · · ·		
3.7	ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE		
	COMPLETION OF ABATEMENT WORK		
	CERTIFICATE OF COMPLETION BY CONTRACTOR		
	WORK SHIFTS		
	RE-INSULATION (NOT USED)		
	HMENT #1		
A'I''L'ACI	HMENT #3		
Contract No. 36C26319D0022			
	on Project No. 656-19-039 oft-AE Project No. 18-116 06	5/02/2023	

04-01-19 ATTACHMENT #4......53

04-01-19

SECTION 02 82 11

CLASS I NEGATIVE PRESSURE ENCLOSURE ASBESTOS ABATEMENT SPECIFICATIONS

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Asbestos Abatement Contractor shall satisfy themselves as to the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Clean-up and disposal of visible asbestos containing debris from dirt floor in designated crawl space area for the following approximate quantities;

(10) cubic (feet) of contaminated soil/materials

C. Removal, clean-up and disposal of asbestos containing materials (ACM) and asbestos/waste contaminated elements in an appropriate regulated area for the following approximate quantities;

(15) linear (feet), under full containment, of asbestos-containing pipe insulation with mudded fittings. This is an estimated amount of material which may be present and exposed as a result of wall and ceiling demolition within the Storage 2B work area (see Drawing HA101, Asbestos Abatement Key Note A5). The removal of (15) linear (feet) of asbestos-containing pipe insulation w/mudded fittings per linear foot, under full containment, will be reflected in the Lump Sum Base Bid. A unit price for the removal

04-01-19

per linear foot, under full containment, will be used as an Add/Deduct on a Change Order, based on the actual amount removed. (95) square feet of mastic adhesive below non-asbestos containing ceramic floor tile. (1) firedoor

1.1.3 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 02 82 13.13 GLOVEBAG ASBESTOS ABATEMENT.
- C. Section 02 82 13.19, ASBESTOS FLOOR TILE AND MASTIC ABATEMENT.
- D. Section 02 83 33.13 LEAD-BASED PAINT REMOVAL AND DISPOSAL.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

- A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and standard operating procedures for asbestos abatement work.
- B. Abatement activities including removal, encapsulation, clean-up and disposal of ACM waste, recordkeeping, security, duration air monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, clearance air monitoring and certification of decontamination.

1.1.5 CONTRACTORS USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action.

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 11 - 2

04-01-19

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall followup with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02'' WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestos-containing materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate. Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some sates require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

04-01-19

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA.

Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos containing
materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic. **Clean room/Changing room** - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH). **Closely resemble** - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 11 - 5

Bancroft Architects + Engineers

04-01-19

must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove
particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glove-like appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all monodispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

St. Cloud VA Health Care System St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

04-01-19

owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Personal protective equipment (PPE) - equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b). **Professional IH** - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) or Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B) (5).

Assigned protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 11 - 8

04-01-19

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II nonfriable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation. **Removal** - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations. **Renovation** - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) - The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work. **Visible emissions** - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 11 - 9

04-01-19

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400
- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420
- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900
- G. CS Commercial Standard of the National Institute of Standards and Technology (NIST)
 U. S. Department of Commerce Government Printing Office Washington, DC 20420
- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420
- J. NIST National Institute for Standards and Technology U. S. Department of Commerce Gaithersburg, MD 20234 301-921-1000

04-01-19

- K. NEC National Electrical Code (by NFPA)
- L. NEMA National Electrical Manufacturer's Association 2101 L Street, N.W. Washington, DC 20037
- M. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555
- N. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- O. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402
- P. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specifications exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State

04-01-19

and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910 Subpart I Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection
 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.1020 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910 Subpart K Medical and First Aid
- B. Environmental Protection Agency (EPA):
 - 1. 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT) Title 49 CFR 100 - 185 - Transportation

1.5.4 STATE REQUIREMENTS

State requirements that apply to the asbestos abatement work, disposal, clearance, etc., include, but are not limited to, the following:

Minnesota Pollution Control Agency (MPCA):

- The MPCA has been delegated the authority by the EPA to enforce NESHAP regulations. They may also review projects for compliance with MDH Asbestos Abatement Rules.
- Guidance Regarding Proper Containment, Shipping and Final Disposal of Asbestos Residual Materials at MPCA-Permitted Landfills (*Minnesota Rules 7035.1700*)

Minnesota Department of Labor and Industry:

- 1. Maintenance and Repair of Buildings and Equipment-Asbestos (Minnesota Rules 5205.0660)
- Demolition, Restoration, Remodeling Survey (Minnesota Rules 5207.0035)

Minnesota Department of Health:

1. Asbestos Abatement Rules (Minnesota Rules 4620.3000 to 4620.3724 and Minnesota Statute Sections 326.70 to 326.81)

04-01-19

1.5.5 LOCAL REQUIREMENTS (NOT USED)

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI Z88.2 - Practices for Respiratory Protection.
 - Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA Filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows: At least ten (10) working days prior to commencement of work, submit "Notification of Asbestos Related Work" to:

Minnesota Pollution Control Agency Industrial Division-Asbestos Program 520 Lafayette Road St. Paul, MN 55155-4194

B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.

04-01-19

1.5.9 PERMITS/LICENSES

A. The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations. At least five (5) calendar days prior to commencement of work, submit "Notification of Asbestos Related Work" with a copy of a signed contract or other written evidence of the total cost of the abatement project and a check in the amount of one per cent of the total cost of the abatement project, made payable to "Minnesota Department of Health", to:

Minnesota Department of Health Asbestos/Lead Compliance Unit P.O. Box 64497 St. Paul, MN 55164-0975 651-201-4610/4620

The Contractor shall list the CPIH as the AIR MONITORING CONTRACTOR on the above referenced notification.

1.5.10 POSTING AND FILING OF REGULATIONS

A. Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each in the clean room at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

Prior to commencement of work:

A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment, and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.

1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a); (b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 11 - 14

04-01-19

confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.

- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the standard operating procedures during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.13 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VA Certified Industrial Hygienist (VPCIH) to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the prestart meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person(s) is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person(s) shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.

St. Cloud VA Health Care System St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

04-01-19

- G. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - Decontamination area set-up/layout and decontamination procedures for employees;
 - 4. Abatement methods/procedures and equipment to be used;
 - 5. Personal protective equipment to be used;
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized on-site shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive standard operating procedures for asbestos work; has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.

04-01-19

- 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete standard operating procedure for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.
- 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the standard operating procedures of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c) (1) (i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a full face powered air purifying respirator when fiber levels are maintained consistently at or below 0.5 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 11 - 17

04-01-19

requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current qualitative/quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Quantitative fit tests shall be done for PAPRs which have been put into a motor/blower failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and Care of Respirators.

1.7.9 SUPPLIED AIR SYSTEMS

If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 - Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". The competent person on site will be responsible for the supplied air system to ensure the safety of the worker.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training

04-01-19

certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m) (4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.4 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.
- B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
- C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)
- D. Shower and wash body completely with soap and water. Rinse thoroughly.
- E. Rinse shower room walls and floor to drain prior to exiting.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 11 - 19

04-01-19

F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.

1.8.5 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70°F throughout the PDF and W/EDF.

1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room via airlock chambers which is connected to the regulated area. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

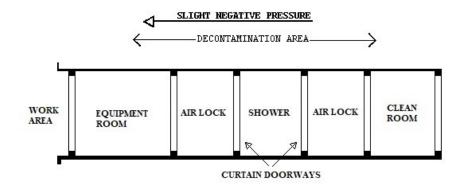
06/02/2023

02 82 11 - 20

04-01-19

room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the airlock prior to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.
- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated


Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

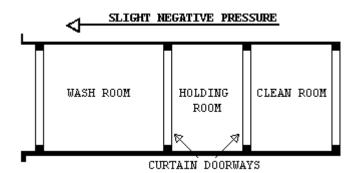
02 82 11 - 21

04-01-19

from the regulated area, the shower room airlock and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical subpanel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.

4. The PDF shall be as follows: Clean room at the entrance followed by an airlock followed by a shower room followed by an airlock followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.

1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)


The Competent Person shall provide an W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the

04-01-19

Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.

- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- 5. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES

At the washdown station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

04-01-19

efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mil shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 Hazard Communication in the pre-start meeting submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All

04-01-19

other posters and notices required by Federal and State regulations shall be posted in the Clean Room.

N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.2 MONITORING, INSPECTION AND TESTING

2.2.1 GENERAL

- A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA and MDH requirements and these specifications. OSHA requires that the employee exposure to asbestos must not exceed 0.1 fiber per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA and MDH requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.
- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. Performance of services provided by the VPIH/CIH shall not supersede nor eliminate the Contractor's responsibilities as required under MDH Asbestos Abatement Rules. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, air monitoring and testing for the safety of their employees and building occupants, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.

04-01-19

C. If fibers counted by the VPIH/CIH and/or CPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative.

2.2.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - Task 1: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - 2. Task 2: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - 3. Task 3: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc.
 - 4. Task 4: Perform, in the presence of the VA representative, final inspection and clearance air testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications.
 - 5. Task 5: Issue certificate of decontamination for each regulated area and project report.
- B. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

04-01-19

2.2.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for performing all duration and clearance air sampling and on-site analysis and inspections required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel and building occupants. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring outside and inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent, a Minnesota Air Sampling Course and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor or Abatement Worker and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.3 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established an Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of this project and the specifications. The AHAP

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

St. Cloud VA Health Care System St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

04-01-19

shall be submitted for review and approval to the VA prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAPs are:

- A. Minimum Personnel Qualifications
- B. Emergency Action Plan/Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements Containment Barriers/Isolation of Regulated Area
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Negative Pressure Systems Requirements
- I. Monitoring, Inspections, and Testing
- J. Removal Procedures for ACM
- K. Removal of Contaminated Soil (if applicable)
- L. Encapsulation Procedures for ACM
- M. Disposal of ACM waste/equipment
- N. Regulated Area Decontamination/Clean-up
- O. Regulated Area Visual and Air Clearance
- P. Project Completion/Closeout

2.4 SUBMITTALS

2.4.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, and fire extinguishers.
 - 4. Respirators, protective clothing, personal protective equipment.
 - 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if

04-01-19

used. Proof of asbestos training for transportation personnel shall be provided.

- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. Area or clearance air monitoring shall be conducted in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - 1. Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; Completion Date
 - 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAPs developed; medical opinion; and current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
 - 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.

04-01-19

- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAPs incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and standard operating procedures; and copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS and application instructions.

2.4.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; and representative air monitoring and results/TWA's/EL's. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - 4. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.4.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

2.5 ENCAPSULANTS

2.5.1 TYPES OF ENCAPSULANTS

- A. The following four types of encapsulants, if used, must comply with comply with performance requirements as stated in paragraph 2.6.2:
 - 1. Removal encapsulant used as a wetting agent to remove ACM.
 - 2. Bridging encapsulant provides a tough, durable coating on ACM.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 11 - 30

04-01-19

- Penetrating encapsulant penetrates/encapsulates ACM at least 13 mm (1/2").
- Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.

2.5.2 PERFORMANCE REQUIREMENTS

Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:

- A. General Requirements for all Encapsulants:
 - 1. ASTM E84: Flame spread of 25; smoke emission of 50.
 - University of Pittsburgh Protocol: Combustion Toxicity; zero mortality.
 - 3. ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4. ASTM E96: Permeability minimum of 0.4 perms.
- B. Bridging/Penetrating Encapsulants:
 - 1. ASTM E736: Cohesion/Adhesion Test 24 kPa (50 lbs/ft²).
 - ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).
 - ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kgmm (43 in/lb).
 - 4. ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking.
- C. Lockdown Encapsulants:
 - 1. ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - ASTM E736: Bond Strength 48 kPa (100 lbs/ft²) (test compatibility with cementitious and fibrous fireproofing).
 - 3. In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or off-gassing any noxious vapors during application.

2.5.3 CERTIFICATES OF COMPLIANCE

The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements for encapsulants when applied according to manufacturer recommendations.

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

- 3.1.1 SITE SECURITY
 - A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
 - B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the

04-01-19

VA Contracting Officer or VA Representative using the most expeditious means.

- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. Access to the regulated area shall be through a single decontamination unit. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed. In any situation where exposure to high temperatures which may result in a flame hazard, fire retardant poly sheeting must be used.
- E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA Representative or Competent Person. The VA Police should be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.

3.1.2. SIGNAGE AND POWER MANAGEMENT

- A. Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed the PEL. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.
- B. Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Ensure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.
- C. Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC

04-01-19

system filters and place in labeled 6-mil polyethylene disposal bags for staging and eventual disposal as asbestos waste.

3.1.3 NEGATIVE PRESSURE FILTRATION SYSTEM

- A. For Storage Room 2B regulated area, the Contractor shall provide enough HEPA negative air machined to continuously maintain a pressure differential of -0.02" water column gauge (WCG). The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to continuously maintain a pressure differential of -0.02" WCG. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area.
- B.For crawlspace area, the Contractor shall provide HEPA negative air machines to scrub the air inside the regulated area and provide a standby unit in the event of machine failure and/or emergency in an adjacent area.

3.1.3.1 DESIGN AND LAYOUT

- A. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - 1. Method of supplying power to the units and designation/location of the panels.
 - Description of testing method(s) for correct air volume and pressure differential.
 - 3. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch.

3.1.3.2 NEGATIVE AIR MACHINES (HEPA UNITS)

- A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.
- B. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

- C. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97%. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.
- D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 μ m or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 μ m or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps.
- E. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation.
- F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriters Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.
- H. It is essential that replacement HEPA filters be tested using an "in-line" testing method, to ensure the seal around the periphery was not damaged during replacement. Damage to the outer HEPA filter seal could allow contaminated air to bypass the HEPA filter and be discharged to an inappropriate location. Contractor will provide written documentation of test results for negative air machine units with HEPA filters changed by the contractor or documentation when changed and tested by the contractor filters

04-01-19

3.1.3.3 PRESSURE DIFFERENTIAL

The fully operational negative air system within the Storage Room 2B regulated area shall continuously maintain a pressure differential of -0.02" water column gauge. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e)(5)(i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification.

3.1.3.4 MONITORING

The pressure differential shall be continuously monitored and recorded between the Storage Room 2B regulated area and the area outside the regulated area with a monitoring device that incorporates a strip chart recorder. The strip chart recorder shall become part of the project log and shall indicate at least -0.02" water column gauge for the duration of the project.

3.1.3.5 AUXILIARY GENERATOR

If the building is occupied during abatement, provide an auxiliary gasoline/diesel generator located outside the building in an area protected from the weather. In the event of a power failure of the general power grid and the VAMC emergency power grid, the generator must automatically start and supply power to a minimum of 50% of the negative air machines in operation.

3.1.3.6 SUPPLEMENTAL MAKE-UP AIR INLETS

Provide, as needed for proper air flow in the regulated area, in a location approved by the VA, openings in the plastic sheeting to allow outside air to flow into the regulated area. Auxiliary makeup air inlets must be located as far from the negative air machines as possible, off the floor near the ceiling, and away from the barriers that separate the regulated area from the occupied clean areas. Cover the inlets with weighted flaps which will seal in the event of failure of the negative pressure system.

3.1.3.7 TESTING THE SYSTEM

The negative pressure system must be tested before any ACM is disturbed in any way. After the Storage Room 2B regulated area has been completely prepared, the decontamination units set up, and the negative air machines installed, start the units up one at a time. Demonstrate and document the operation and testing of the negative pressure system to the VA using smoke tubes and a negative pressure gauge. Verification and documentation of adequate negative pressure differential across each barrier must be done at the start of each work shift.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

3.1.3.8 DEMONSTRATION OF THE NEGATIVE PRESSURE FILTRATION SYSTEM

For the Storage Room 2B regulated area, demonstration of the operation of the negative pressure system to the VA shall include, but not be limited to, the following:

- A. Plastic barriers and sheeting move lightly in toward the regulated area.
- B. Curtains of the decontamination units move in toward regulated area.
- C. There is a noticeable movement of air through the decontamination units. Use the smoke tube to demonstrate air movement from the clean room to the shower room to the equipment room to the regulated area.
- D. Use smoke tubes to demonstrate air is moving across all areas in which work is to be done. Use a differential pressure gauge to indicate a negative pressure of at least -0.02" across every barrier separating the regulated area from the rest of the building. Modify the system as necessary to meet the above requirements.

3.1.3.9 USE OF THE NEGATIVE PRESSURE FILTRATION SYSTEM DURING ABATEMENT OPERATIONS

- A. For Storage Room 2B regulated area, start units before beginning any disturbance of ACM occurs. After work begins, the units shall run continuously, maintaining 4 actual air changes per hour at a negative pressure differential of -0.02" water column gauge, for the duration of the work until a final visual clearance and final air clearance has been successfully completed. No negative air units shall be shut down at any time unless authorized by the VA Contracting Officer, verbally and in
- writing.
 B. Pre-cleaning of ACM contaminated items shall be performed
 after the enclosure has been erected and negative pressure
 has been established in the work area. After items have been
 pre-cleaned and decontaminated, they may be removed from the
 work area for storage until the completion of abatement in
 the work area.
- C. Abatement work shall begin at a location farthest from the units and proceed towards them. If an electric failure occurs, the Competent Person shall stop all abatement work and immediately begin wetting all exposed asbestos materials for the duration of the power outage. Abatement work shall not resume until power is restored and all units are operating properly again.
- D. The negative air machines shall continue to run after all work is completed and until a final visual clearance and a final air clearance has been successfully completed for that regulated area.

04-01-19

3.1.3.10 DISMANTLING THE SYSTEM

After completion of the final visual and final air clearance has been obtained by the VPIH/CIH, the units may be shut down. The unit exterior surfaces shall have been completely decontaminated; pre-filters are not to be removed and the units inlet/outlet sealed with 2 layers of 6 mil poly immediately after shut down. No filter removal shall occur at the VA site following successful completion of site clearance. OSHA/EPA/DOT asbestos shall be attached to the units.

3.1.4 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

3.1.4.1 GENERAL

Using critical barriers seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent occupied spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result of the work, the Contractor shall immediately stop work and clean up the contamination at no additional cost to the VA.

3.1.4.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA

Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects remaining in the regulated area shall be completely covered with 2 layers of 6mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area.

3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid with a lockable entrance and capable of withstanding the negative pressure.

3.1.4.4 CRITICAL BARRIERS

Completely separate any operations in the regulated area from adjacent occupied areas using 2 layers of 6 mil fire retardant poly and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 11 - 37

04-01-19

regulated area. Heat must be shut off any objects covered with poly.

3.1.4.5 PRIMARY BARRIERS

A. For Storage Room 2B regulated area, cover the regulated area with two layers of 6 mil fire retardant poly on the floors and two layers of 4 mil, fire retardant poly on the walls, unless otherwise directed in writing by the VA representative. Floor layers must form a right angle with the wall and turn up the wall at least 300 mm (12"). Seams must overlap at least 1800 mm (6') and must be spray glued and taped. Install sheeting so that layers can be removed independently from each other. Carpeting shall be covered with three layers of 6 mil poly. Corrugated cardboard sheets must be placed between the bottom and middle layers of poly. Mechanically support and seal with duct tape and glue all wall layers.

3.1.4.6 SECONDARY BARRIERS (NOT USED)

3.1.4.7 EXTENSION OF THE REGULATED AREA

If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. Decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

3.1.4.8 FIRESTOPPING (NOT USED)

3.1.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.1.6 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, gloves and foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.

3.1.7 PRE-CLEANING

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. All workers performing pre-cleaning activities must don appropriate personal protective equipment (PPE), as specified throughout this document and as approved in the Contractor's work plan. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location. Drapes, clothing, upholstered furniture and other fabric items should be disposed of as asbestos contaminated waste. Cleaning these asbestos contaminated items utilizing HEPA vacuum techniques and off-premises steam cleaning is very difficult and cannot guarantee decontamination. Carpeting will be disposed of prior to abatement if in the regulated area. If ACM floor tile is attached to the carpet while the Contractor is removing the carpet that section of the carpet will be disposed of as asbestos waste.

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.

3.1.8 PRE-ABATEMENT ACTIVITIES

3.1.8.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 11 - 39

04-01-19

or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.8.2 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance.
- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations.

3.1.8.3 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawlspaces (previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.
- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be

02 82 11 - 40

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

removed from the regulated area have been cleaned and removed or properly protected from contamination.

- D. If present and required, remove and dispose of carpeting from floors in the regulated area.
- E. Inspect existing firestopping in the regulated area. Correct as needed.

3.2 REMOVAL OF ACM

3.2.1 WETTING ACM

- A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.
- B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water.
- C. Removal Encapsulant: When authorized by VA, provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during removal.

3.2.2 SECONDARY BARRIER AND WALKWAYS (NOT USED)

3.2.3 WET REMOVAL OF ACM

- A. Adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time (at a minimum two hours) must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except when authorized in writing by the VPIH/CIH and VA when a greater safety hazard (e.g., electricity) is present. B. If ACM does not wet well with amended water due to composition, coating or jacketing, remove as follows:
 - 1. Mist work area continuously with amended water whenever necessary to reduce airborne fiber levels.
 - Remove saturated ACM in small sections. Do not allow material to dry out. As material is removed, bag material, while still wet into disposal bags. Twist the bag neck tightly, bend over (gooseneck) and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 11 - 41

04-01-19

seal with a minimum of three tight wraps of duct tape. Clean /decontaminate the outside of the bag of any residue and move to washdown station adjacent to W/EDF.

- 3. Fireproofing or Architectural Finish on Scratch Coat: Spray with a fine mist of amended water or removal encapsulant. Allow time for saturation to the substrate. Do not over saturate causing excess dripping. Scrape material from substrate. Remove material in manageable quantities and control falling to staging or floor. If the falling distance is over 20 feet (6M), use a drop chute to contain material through descent. Remove residue remaining on the scratch coat after scraping is done using a stiff bristle hand brush. If a removal encapsulant is used, remove residue completely before the encapsulant dries. Periodically re-wet the substrate with amended water as needed to prevent drying of the material before the residue is removed from the substrate.
- 4. Fireproofing or Architectural Finish on Wire Lath: Spray with a fine mist of amended water or removal encapsulant. Allow time to completely saturate the material. Do not over saturate causing excess dripping. If the surface has been painted or otherwise coated, cut small holes as needed and apply amended water or removal encapsulant from above. Cut saturated wire lath into 2' x 6' (50mm x 150mm) sections and cut hanger wires. Roll up complete with ACM, cover in burlap and hand place in disposal bag. Do not drop to floor. After removal of lath/ACM, remove any overspray on decking and structure using stiff bristle nylon brushes. Depending on hardness of overspray, scrapers may be needed for removal.
- 5. Pipe/Tank/Vessel/Boiler Insulation: Remove the outer layer of wrap while spraying with amended water in order to saturate the ACM. Spray ACM with a fine mist of amended water or removal encapsulant. Allow time to saturate the material to the substrate. Cut bands holding pre-formed pipe insulation sections. Slit jacketing at the seams, remove and hand place in a disposal bag. Do not allow dropping to the floor. Remove molded fitting insulation/mud in large pieces and hand place in a disposal bag. Remove any residue on pipe or fitting with a stiff bristle nylon brush. In locations where pipe fitting insulation is removed from fibrous glass or other non-asbestos insulated straight runs of pipe, remove fibrous material at least 6" from the point it contacts the ACM.

3.2.4 WET REMOVAL OF AMOSITE (NOT USED)

3.2.5 REMOVAL OF ACM/DIRT FLOORS AND OTHER SPECIAL PROCEDURES

- A. Crawlspaces/Pipe Tunnels:
 - Remove all visible asbestos debris throughout designated crawlspace area by wetting material and adjacent soil within a one (1) foot radius. Remove soil six (6) inches below debris. If debris is still visible, repeat soil removal until no visible debris is present. Dispose of the debris and associated soil as asbestos containing waste.
 - 2. After all visible debris has been removed throughout, cover soil in entire designated crawl space with fire retardant reinforced 6 mil polyethylene sheeting. Seams on the sheeting must be a minimum of twelve (12") inches and adhered together with spray glue. The sheeting must run up the perimeter walls a minimum of twelve (12") inches and

04-01-19

attached with the use of spray glue. The sheeting must be staked to the soil subsurface with four (4") to six (6") inch staples spaced in a six (6') foot grid pattern. Cover staple areas with an "air barrier tape" specifically designed to prevent air intrusion. Existing polyethylene sheeting will remain in place and covered this new sheeting as described above.

- 3. Application of the lockdown encapsulation will occur only after the installation of the polyethylene sheeting over the dirt floor.
- 4. Clearance sampling requirements are specified in Sections 3.6.3, 3.6.4 and 3.6.5.

3.3 LOCKDOWN ENCAPSULATION

3.3.1 GENERAL

Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, the contractor shall encapsulate all surfaces with a lockdown encapsulant. Apply the lockdown encapsulant with an airless sprayer at a pressure and using a nozzle orifice as recommended by the manufacturer.

3.3.2 DELIVERY AND STORAGE

Deliver materials to the job site in original, new and unopened containers bearing the manufacturer's name and label as well as the following information: name of material, manufacturer's stock number, date of manufacture, thinning instructions, application instructions and the MSDS for the material.

3.3.3 WORKER PROTECTION

Before beginning work with any material for which an MSDS has been submitted, provide workers with any required personal protective equipment. The required personal protective equipment shall be used whenever exposure to the material might occur. In addition to OSHA/specification requirements for respiratory protection, a paint prefilter and an organic vapor cartridge, at a minimum, shall used in addition to the HEPA filter when an organic solvent based encapsulant is used. The CPIH/CIH shall be responsible for provision of adequate respiratory protection. Note: Flammable and combustible encapsulants shall not be used, unless authorized in writing by the VA.

3.3.4 ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING (NOT USED)

3.3.5 SEALING EXPOSED EDGES (NOT USED)

04-01-19

3.4 DISPOSAL OF ACM WASTE MATERIALS

3.4.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.4.2 PROCEDURES

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment.
- B. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures is this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.
- C. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped or HEPA vacuumed.
- D. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.5 PROJECT DECONTAMINATION

3.5.1 GENERAL

- A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

04-01-19

3.5.2 REGULATED AREA CLEARANCE

Clearance air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.5.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.5.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be collected and removed, and the loose 6 mil layer of poly removed while being adequately wetted with amended water and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - 1. Primary barriers consisting of 2 layers of 6 mil poly on the floor and 1 layer of 4 mil poly on the walls.
 - 2. Critical barriers consisting of 2 layers of 6 mil poly which is the sole barrier between the regulated area and openings to the rest of the building or outside.
 - 4. Decontamination facilities for personnel and equipment in operating condition and the negative pressure system in operation.

3.5.5 FIRST CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.5.6 PRE-CLEARANCE INSPECTION AND TESTING

The CPIH/CIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III) (B) (7) (d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

3.5.7 LOCKDOWN ENCAPSULATION OF REGULATED AREA

Perform lockdown encapsulation of all surfaces within the crawlspace regulated area after installation of fire retardant reinforced 6 mil polyethylene sheeting over entire dirt floor surface in accordance with the procedures in this specification.

3.6 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING

3.6.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH starting after the final cleaning.

3.6.2 FINAL VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.6.3 FINAL AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and CPIH/CIH, the VPIH/CIH and CPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. 5 PCM samples shall be collected for clearance and a minimum of two field blanks If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All Additional inspection and testing costs will be borne by the Contractor.
- B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.6.4 FINAL AIR CLEARANCE PROCEDURES

- A. Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the MDH PCM protocol.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH and CPIH/CIH will secure samples and analyze them according to the following procedures:
 - Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method.
 - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not enclosed. Samples will be collected on 0.8μ MCE filters for PCM analysis. A minimum of 2000 Liters of using calibrated pumps shall be collected for clearance samples. Air samples will be collected in areas subject

04-01-19

to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents.

3. Final clearance for soil that is not encapsulated, samples will be collected on 0.8μ MCE filters for PCM analysis. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. There will be no aggressive air sampling for the clearance of soil due to the fact that aggressive air sampling may overload the cassettes.

3.6.5 CLEARANCE SAMPLING USING PCM

- A. The VPIH/CIH and CPIH/CIH will perform clearance samples as indicated by the specification.
- B. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 2000 Liters of air. A minimum of 5 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.

3.6.6 CLEARANCE SAMPLING USING TEM (NOT USED)

3.6.7 LABORATORY TESTING OF PCM CLEARANCE SAMPLES

The services of an AIHA accredited laboratory will be employed by the VA and the Asbestos Contractor to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be analyzed on-site daily by the VPIH/CIH and CPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.

3.6.8 LABORATORY TESTING OF TEM SAMPLES (NOT USED)A

3.6.9 LABORATORY TESTING OF BULK SAMPLES (NOT USED)

3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.7.1 COMPLETION OF ABATEMENT WORK

After thorough decontamination, seal negative air machines with 2 layers of 6 mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:

- A. Remove all equipment and materials from the project area.
- B. Dispose of all packaged ACM waste as required.
- C. Repair or replace all interior finishes damaged during the abatement work, as required.
- D. Fulfill other project closeout requirements as required in this specification.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.7.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday -Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

3.7.4 RE-INSULATION (NOT USED)

ATTACHMENT #1

CERTIFICATE OF COMPLETION

	DATE: VA Project #:
	PROJECT NAME:Abatement Contractor:
	VAMC/ADDRESS:
1.	I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):
	which took place from / / to / /
2.	That throughout the work all applicable requirements/regulations and the VA's specifications were met.
3.	That any person who entered the regulated area was protected with the

- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-19

- That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all abatement work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH					
	Signature/Date:				
	·····	-			
CPIH/CIH	Print				
	Name:				
	<u></u>				
Abatement	Contractor				
	Signature/Date:				
	<u></u>				
Abatement	Contractor Print				
	Name:				
	· · · · · · · · · · · · · · · · · · ·	_			

ATTACHMENT #2

04-01-19

CERTIFICATE	OF	WORKER'S	ACKNOWLEDGMENT
-------------	----	----------	----------------

PROJECT	NAME :	DATE:
PROJECT	ADDRESS:	
ABATEMEI	T CONTRACTOR'S NAME:	

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature:

Printed Name:

04-01-19

Social Security Number:_____

Witness:_____

ATTACHMENT #3

04-01-19

AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION

VA PROJECT NAME AND NUMBER:

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

_____Social Security Number:_____ Name:

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.

- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH/CIH: _____ Date: _____

Printed Name of CPIH/CIH:

Signature of Contractor:_____Date:____Date:_____Date:___Date:____Date:____Date:____Date:___Date:___Date:___Date:___Date:___Date:___Date:__Date:

Printed Name of Contractor:_____

ATTACHMENT #4

04-01-19

ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS

VA Project Location: VA Project #: VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature_____Date_____

Abatement Contractor Competent Person(s) _____ Date ______ Date _____

09-01-15

SECTION 02 82 13.13 GLOVEBAG ASBESTOS ABATEMENT

TABLE OF CONTENTS

PART 1 - GENERAL 1
1.1 SUMMARY OF THE WORK 1
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS 1
1.1.2 EXTENT OF WORK 11
1.1.3 RELATED WORK 11
1.1.4 TASKS 11
1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES 22
1.2 VARIATIONS IN QUANTITY 22
1.3 STOP ASBESTOS REMOVAL 22
1.4 DEFINITIONS
1.4.1 GENERAL
1.4.2 GLOSSARY
1.4.3 REFERENCED STANDARDS ORGANIZATIONS
1.5 APPLICABLE CODES AND REGULATIONS 1011
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS 1011
1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY 1011
1.5.3 FEDERAL REQUIREMENTS 1111
1.5.4 STATE REQUIREMENTS 1112
1.5.5 LOCAL REQUIREMENTS (NOT USED) 1212
1.5.6 STANDARDS 1212
1.5.7 EPA GUIDANCE DOCUMENTS 1213
1.5.8 NOTICES 1213
1.5.9 PERMITS 1213
1.5.10 POSTING AND FILING OF REGULATIONS 1314
1.5.11 VA RESPONSIBILITIES 1314
1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS 1314
1.5.14 PRE-CONSTRUCTION MEETING 1415
1.6 PROJECT COORDINATION 1515
1.6.1 PERSONNEL 1516
1.7 RESPIRATORY PROTECTION 1617
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM 1617
1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR 1617

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - i

1.7.3 SELECTION AND USE OF RESPIRATORS	9-01-15				
1.7.4 MINIMUM RESPIRATORY PROTECTION	1617				
1.7.5 MEDICAL WRITTEN OPINION	1617				
1.7.6 RESPIRATOR FIT TEST	1717				
1.7.7 RESPIRATOR FIT CHECK	1718				
1.7.8 MAINTENANCE AND CARE OF RESPIRATORS	1718				
1.8 WORKER PROTECTION	1718				
1.8.1 TRAINING OF ABATEMENT PERSONNEL	1718				
1.8.2 MEDICAL EXAMINATIONS	1718				
1.8.3 PERSONAL PROTECTIVE EQUIPMENT	1718				
1.8.4 REGULATED AREA ENTRY PROCEDURE	1718				
1.8.5 DECONTAMINATION PROCEDURE	1819				
1.8.6 REGULATED AREA REQUIREMENTS					
1.9 DECONTAMINATION FACILITIES					
1.9.1 DESCRIPTION					
1.9.2 GENERAL REOUIREMENTS					
- 1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF	. 1920				
1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)					
1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF) (NOT USED)					
1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES (NOT USED)					
PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT					
2.1 MATERIALS AND EQUIPMENT					
2.1.1 GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)					
2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA					
2.2.1 GENERAL					
2.2.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA					
2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA					
2.2.4 CRITICAL BARRIERS					
2.2.5 SECONDARY BARRIERS					
2.2.6 EXTENSION OF THE REGULATED AREA					
2.2.7 FIRESTOPPING (NOT USED)					
2.3 MONITORING, INSPECTION AND TESTING					
2.3.1 GENERAL					
2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT					
2.3.3 MONITORING, INSPECTION AND TESTING BY ABATEMENT CONTRACTOR	. 2720				
CPIH/CIH	. 2526				
Contract No. 36C26319D0022 Station Project No. 656-19-039					
Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/0	02/2023				
02 82 13.13 - ii					

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

Danetote Ateniteets + Engineers	-01-15
2.4 ASBESTOS HAZARD ABATEMENT PLAN	
2.5 SUBMITTALS	2627
2.5.1 PRE-START MEETING SUBMITTALS	2627
2.5.2 SUBMITTALS DURING ABATEMENT	2829
2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT	2829
2.6 ENCAPSULANTS	2830
2.6.1 TYPES OF ENCAPSULANTS	2830
2.6.2 PERFORMANCE REQUIREMENTS	2830
2.7 CERTIFICATES OF COMPLIANCE	2930
2.8 RECYCLABLE PROTECTIVE CLOTHING	2930
PART 3 - EXECUTION	2931
3.1 REGULATED AREA PREPARATIONS	2931
3.1.1 SITE SECURITY	2931
3.1.2 OSHA DANGER SIGNS	3031
3.1.3.1 SHUT DOWN - LOCK OUT ELECTRICAL	3031
3.1.3.2 SHUT DOWN - LOCK OUT HVAC	3032
3.1.4 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA	3032
3.1.4.1 GENERAL	3032
3.1.4.2 PREPARATION PRIOR TO SEALING OFF	3032
3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA	3132
3.1.4.4 CRITICAL BARRIERS	3132
3.1.4.5 EXTENSION OF THE REGULATED AREA	3133
3.1.4.6 FLOOR BARRIERS	3133
3.1.5 SANITARY FACILITIES	3133
3.1.6 PRE-CLEANING	3133
3.1.6.1 PRE-CLEANING MOVABLE OBJECTS	3133
3.1.6.2 PRE-CLEANING FIXED OBJECTS	3233
3.1.6.3 PRE-CLEANING SURFACES IN THE REGULATED AREA	3234
3.1.7 PRE-ABATEMENT ACTIVITIES	3234
3.1.7.1 PRE-ABATEMENT MEETING	3234
3.1.7.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS	3334
3.1.7.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS	3335
3.2 REMOVAL OF PIPINF ACM	3335
3.2.1 WETTING MATERIALS	3335
3.2.2 SECONDARY BARRIER AND WALKWAYS	3435
3.2.3 WET REMOVAL OF ACM.	3436
Contract No. 36C26319D0022 Station Project No. 656-19-039	
Bancroft-AE Project No. 18-116 06/02	2/2023
02 82 13.13 - iii	

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

)1-15
3.3 GLOVEBAG REMOVAL PROCEDURES	
3.3.1 GENERAL	
3.3.2 NEGATIVE PRESSURE GLOVEBAG PROCEDURE	
3.4 LOCKDOWN ENCAPSULATION	3637
3.4.1 GENERAL	3637
3.4.2 SEALING EXPOSED EDGES	3637
3.5 DISPOSAL OF ACM WASTE MATERIALS	3638
3.5.1 GENERAL	3638
3.5.2 PROCEDURES	3638
3.6 PROJECT DECONTAMINATION	3638
3.6.1 GENERAL	3638
3.6.2 REGULATED AREA CLEARANCE	3739
3.6.3 WORK DESCRIPTION	3739
3.6.4 PRE-DECONTAMINATION CONDITIONS	3739
3.6.5 FIRST CLEANING	3739
3.6.6 PRE-CLEARANCE INSPECTION AND TESTING	3739
3.6.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES	3840
3.7 FINAL VISUAL INSPECTIONS AND AIR CLEARANCE TESTING	3840
3.7.1 GENERAL	3840
3.7.2 FINAL VISUAL INSPECTION	3840
3.7.3 DURATION/FINAL AIR CLEARANCE TESTING	3840
3.7.4 DURATION/FINAL AIR CLEARANCE PROCEDURES	3840
3.7.5 CLEARANCE SAMPLING USING PCM	3941
3.7.6 CLEARANCE SAMPLING USING TEM (NOT USED)	3941
3.7.7 LABORATORY TESTING OF PCM SAMPLES	3941
3.7.8 LABORATORY TESTING OF TEM SAMPLES (NOT USED)	3941
3.8 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE	3941
3.8.1 COMPLETION OF ABATEMENT WORK	3941
3.8.2 CERTIFICATE OF COMPLETION BY CONTRACTOR	3941
3.8.3 WORK SHIFTS	3941
3.8.4 RE-INSULATION (NOT USED)	4042
ATTACHMENT #1	4143
ATTACHMENT #2	4244
ATTACHMENT #3	4346
ATTACHMENT #4	4447

02 82 13.13 - iv

09-01-15

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated by the glovebag method. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Removal, clean-up and disposal of ACM piping and fittings and asbestos contaminated elements in an appropriate regulated area in the following approximate quantities:

(3) linear (feet) of asbestos-containing pipe insulation located in building 50 sub-basement crawlspace. Glovebag removal shall take place after Section 02 82 11 TRADITIONAL ASBESTOS ABATEMENT crawlspace work has been completed.

1.1.3 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 02 82 11 TRADITIONAL ASBESTOS ABATEMENT.
- C. SECTION 02 82 13.19, ASBESTOS FLOOR TILE AND MASTIC ABATEMENT.
- D. Section 02 83 33.13 LEAD-BASED PAINT REMOVAL AND DISPOSAL.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, work-site

09-01-15

preparations, emergency procedures arrangements, and Asbestos Hazard Abatement Plans for glovebag asbestos abatement work.

- B. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, air monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.

1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action.

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated, which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/ Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall followup with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 13.13 - 2

09-01-15

to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02" WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestos-containing materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM). Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate. **Air sample filter** - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

09-01-15

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some states require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA).

Barrier - Any surface that isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos containing
materials.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 4

09-01-15

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic. **Clean room/Changing room** - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH). **Closely resemble** - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 5

09-01-15

than the amount that can be contained in one standard sized glove bag or waste bag, in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag and shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glove-like appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all monodispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 6

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

09-01-15

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR Part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal protective equipment (PPE) - equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or more workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 7

09-01-15

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b). **Professional IH** - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) of Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B) (5).

Assigned Protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II nonfriable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation. Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations. Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 8

09-01-15

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) - The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work. **Visible emissions** - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/ specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St.

09-01-15

Philadelphia, PA 19103 215-299-5400

- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420
- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900
- G. CS Commercial Standard of the National Institute of Standards and Technology(NIST)
 U. S. Department of Commerce Government Printing Office Washington, DC 20420
- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420

J. NIST National Institute for Standards and Technology U. S. Department of Commerce Gaithersburg, MD 20234 301-921-1000

- K. NEC National Electrical Code (by NFPA)
- L. NEMA National Electrical Manufacturer's Association 2101 L Street, NW Washington, DC 20037
- M. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555
- N. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- O. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02 82 13.13 - 10

09-01-15

P. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specification exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern some aspect of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910 Subpart I Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection
 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.1020 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910 Subpart K Medical and First Aid
- B. Environmental Protection Agency (EPA)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 11

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

09-01-15

- 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants - Asbestos.
- 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT) Title 49 CFR 100 - 185 - Transportation

1.5.4 STATE REQUIREMENTS:

State requirements that apply to the asbestos abatement work, disposal, clearance, etc., include, but are not limited to, the following:

Minnesota Pollution Control Agency (MPCA):

- 1. The MPCA has been delegated the authority by the EPA to enforce NESHAP regulations. They may also review projects for compliance with MDH Asbestos Abatement Rules.
- Guidance Regarding Proper Containment, Shipping and Final Disposal of Asbestos Residual Materials at MPCA-Permitted Landfills (*Minnesota Rules 7035.1700*).

Minnesota Department of Labor and Industry:

- 1. Maintenance and Repair of Buildings and Equipment-Asbestos (Minnesota Rules 5205.0660).
- 2. Demolition, Restoration, Remodeling Survey (Minnesota Rules 5207.0035).

Minnesota Department of Health:

1. Asbestos Abatement Rules (Minnesota Rules 4620.3000 to 4620.3724 and Minnesota Statute Sections 326.70 to 326.81).

1.5.5 LOCAL REQUIREMENTS (NOT USED)

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI Z88.2 - Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to, the following:
- 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.

09-01-15

- 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
- 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007.
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.
- C. At least ten (10) working days prior to commencement of work, submit "Notification of Asbestos Related Work" to:

Minnesota Pollution Control Agency Industrial Division-Asbestos Program 520 Lafayette Road St. Paul, MN 55155-4194

1.5.9 PERMITS

The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.

Local regulations.

At least five (5) calendar days prior to commencement of work, submit "Notification of Asbestos Related Work" with a copy of a signed contract or other written evidence of the total cost of the abatement project and a check in the amount of one per cent of the total cost of the abatement project, made payable to "Minnesota Department of Health", to:

Minnesota Department of Health Asbestos/Lead Compliance Unit P.O. Box 64497 St. Paul, MN 55164-0975 651-201-4610/4620

The Contractor shall list the CPIH as the AIR MONITORING CONTRACTOR on the above referenced notification.

09-01-15

1.5.10 POSTING AND FILING OF REGULATIONS

Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

Prior to commencement of work:

A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment, and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.

1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed by prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a); (b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.
- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.

09-01-15

H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the Asbestos Hazard Abatement Plans during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.14 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VPCIH to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the pre-start meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project. A copy of the Contractor's Asbestos Hazard Abatement Plan (AHAP) for Class I Glovebag Asbestos Abatement. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - If required, decontamination area set-up/layout and decontamination procedures for employees;
 - 4. Glovebag abatement methods/procedures and equipment to be used; and
 - 5. Personal protective equipment to be used.
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

09-01-15

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized on-site shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive Asbestos Hazard Abatement Plans (AHAPs) for asbestos work; and has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
 - 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete Asbestos Hazard Abatement Plan for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.
 - 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the Asbestos Hazard Abatement Plans of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.

09-01-15

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910 Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c) (1) (i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a full face powered air purifying respirator when fiber levels are maintained consistently at or below 0.5 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Fit tests shall be done for PAPR's which have been put into a failure mode.

09-01-15

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) maintenance and care of respirators.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m) (4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.

1.8.4 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

1.8.5 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.
- B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
- C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)
- D. Shower and wash body completely with soap and water. Rinse thoroughly.
- E. Rinse shower room walls and floor to drain prior to exiting.
- F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.

1.8.6 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for Class I glovebag regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

09-01-15

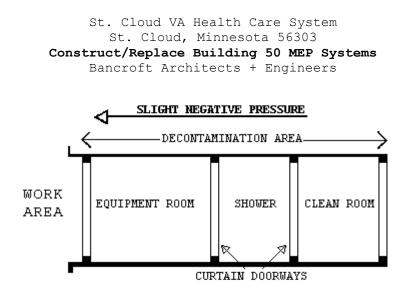
1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70°F throughout the PDF and W/EDF.

1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)


The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.

1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street

09-01-15

clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.

- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of once per day or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.
- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical subpanel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.
- 4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.

1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF) (NOT USED)

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES (NOT USED)

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mils shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-15

02 82 13.13 - 22

09-01-15

of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.

- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 Hazard Communication in the pre-project submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

2.2.1 GENERAL

Using critical barriers, seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces.

2.2.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA

A. Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. Remove all uncontaminated removable furniture, equipment and/or supplies from the regulated area before commencing work, or completely cover with 2 layers of 6-mil fire retardant poly sheeting and secure with duct tape. Lock out and tag out any HVAC systems in the regulated area.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA

A. Access to the regulated area is allowed only through the personnel decontamination facility (PDF), if required. All other means of access shall be eliminated and OSHA Danger demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly sheeting to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid.

2.2.4 CRITICAL BARRIERS

A. Completely separate any openings into the regulated area from adjacent areas using fire retardant poly at least 6 mils thick and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Heat must be shut off any objects covered with poly.

2.2.5 SECONDARY BARRIERS

A. A loose layer of 6 mil fire retardant poly shall be used as a drop cloth to protect the floor/horizontal surfaces from debris generated during the glovebag abatement. This layer shall be replaced as needed during the work.

2.2.6 EXTENSION OF THE REGULATED AREA-NOT USED

2.2.7 FIRESTOPPING (NOT USED)

2.3 MONITORING, INSPECTION AND TESTING

2.3.1 GENERAL

- A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA and MDH requires that the Employee exposure to asbestos must not exceed 0.1 fibers per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA and MDH requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.
- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. Performance of services provided by the VPIH/CIH shall not supersede nor eliminate the Contractor's responsibilities as required under MDH Asbestos Abatement Rules. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in

09-01-15

accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, duration/clearance air monitoring and testing for the safety of their employees and building occupants, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.

C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH/CIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative.

2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: Assure quality; resolve problems; and prevent the spread of contamination beyond the regulated area. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - 1.Task 1: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - 2. Task 2: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, air monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - Task 3: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of unforeseen developments, etc.
 - 4. Task 4: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area or building at the conclusion of the abatement and clean-up work to certify compliance with all regulations and the VA requirements/specifications.

09-01-15

- 5. Task 5: Issue certificate of decontamination for each regulated area or building and project report.
- B. All data, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.3.3 MONITORING, INSPECTION AND TESTING BY ABATEMENT CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for performing all duration/clearance air sampling and on-site analysis, monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel and building occupants. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring outside and inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent, a Minnesota Air Sampling course and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor (or Abatement Worker) and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of

09-01-15

two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.4 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the ways and procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of the project. The AHAP shall be submitted for review and approval prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAP(s) are:

- A. Minimum Personnel Qualifications
- B. Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements for Glovebag Abatement
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Monitoring, Inspections, and Testing
- I. Removal Procedures for Piping ACM Using the Glovebag Method
- J. Disposal of ACM waste
- K. Regulated Area Decontamination/Clean-up
- L. Regulated Area Visual and Air Clearance
- M. Project Completion/Closeout

2.5 SUBMITTALS

2.5.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, and fire extinguishers.
 - 4. Respirators, protective clothing, personal protective equipment.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

5. Fire safety equipment to be used in the regulated area.

- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. And area or clearance air monitoring in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; and Completion Date
 - List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; and Resolution.
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAP(s) developed; medical opinion; and current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

- 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAP(s) incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and Asbestos Hazard Abatement Plans; copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS, and application instructions.

2.5.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWAs/ELs. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - 4. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

2.6 ENCAPSULANTS

2.6.1 TYPES OF ENCAPSULANTS

- A. The following four types of encapsulants must comply with comply with performance requirements as stated in paragraph 2.6.2:
 - 1. Removal encapsulant used as a wetting agent to remove ACM.
 - 2. Bridging encapsulant provides a tough, durable coating on ACM.
 - Penetrating encapsulant penetrates/encapsulates ACM at least 13 mm (1/2").
 - Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.

2.6.2 PERFORMANCE REQUIREMENTS

Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:

- A. General Requirements for all Encapsulants:
 - 1. ASTM E84: Flame spread of 25; smoke emission of 50.
 - University of Pittsburgh Protocol: Combustion Toxicity; zero mortality.
 - 3. ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4. ASTM E96: Permeability minimum of 0.4 perms.
- B. Bridging/Penetrating Encapsulants:
 - 1. ASTM E736: Cohesion/Adhesion Test 24 kPa (50 lbs/ft²).
 - 2. ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).
 - 3. ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kgmm (43 in/lb).
 - 4. ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking.
- C. Lockdown Encapsulants:
 - 1. ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - 2. ASTM E736: Bond Strength 48 kPa (100 lbs/ft²) (test compatibility with cementitious and fibrous fireproofing).
 - 3. In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or off-gassing any noxious vapors during application.

2.7 CERTIFICATES OF COMPLIANCE

The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements for encapsulants when applied according to manufacturer recommendations.

2.8 RECYCLABLE PROTECTIVE CLOTHING

If recyclable clothing is provided, all requirements of EPA, DOT and OSHA shall be met.

09-01-15

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

3.1.1 SITE SECURITY

- A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- E. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- F. The regulated area shall be locked during non-working hours and secured by VA Representative or Competent Person. The VA Police should be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.

3.1.2 OSHA DANGER SIGNS

Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed ambient background levels. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.

3.1.3.1 SHUT DOWN - LOCK OUT ELECTRICAL

Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 31

09-01-15

3.1.3.2 SHUT DOWN - LOCK OUT HVAC

Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil poly disposal bags for disposal as asbestos waste.

3.1.4 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA

3.1.4.1 GENERAL

Seal off any openings at the perimeter of the regulated area with critical barriers to completely isolate the regulated area and to contain all airborne asbestos contamination created by the abatement activities. Should the adjacent area past the regulated area become contaminated due to improper work activities, the Contractor shall suspend work inside the regulated area, continue wetting, and clean the adjacent areas in accordance with procedures described in these specifications. Any and all costs associated with the adjacent area cleanup shall not be borne by the VA.

3.1.4.2 PREPARATION PRIOR TO SEALING OFF

Place all materials, equipment and supplies necessary to isolate the regulated area inside the regulated area. Remove all movable material/equipment as described above and secure all unmovable material/equipment as described above. Properly secured material/ equipment shall be considered to be outside the regulated area.

3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

3.1.4.4 CRITICAL BARRIERS

The regulated area must be completely separated from the adjacent area(s) and the outside by at least 2 layers of 6 mil fire retardant poly and duct tape/spray adhesive. Individually seal all supply and exhaust ventilation openings, lighting fixtures, clocks, doorways, windows, convectors, speakers, and other openings into the regulated area with 2 layers of 6 mil fire retardant poly, and taped securely in place with duct tape/spray adhesive. Critical barriers must remain in place until all work and clearances have been completed. Light fixtures shall not be operational during abatement. Auxiliary lighting shall be provided. If needed, provide plywood squares 6" x 6" x 3/8" held in place with one 6d smooth masonry/galvanized nail driven through the center of the plywood

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

square and duct tape on the poly so as to clamp the poly to the wall/surface. Locate plywood squares at each end, corner, and 4' maximum on centers.

3.1.4.5 EXTENSION OF THE REGULATED AREA

If the regulated area barrier is breached in any manner that could allow the passage of asbestos fibers or debris, the Competent Person shall immediately stop work, continue wetting, and proceed to extend the regulated area to enclose the affected area as per procedures described in this specification. If the affected area cannot be enclosed, decontamination measures and cleanup shall start immediately. All personnel shall be isolated from the affected area until decontamination/cleanup is completed as verified by visual inspection and air monitoring. Air monitoring at completion must indicate background levels.

3.1.4.6 FLOOR BARRIERS:

All floors within 10' of glovebag work shall be covered with 2 layers of 6 mil fire retardant poly.

3.1.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.1.6 PRE-CLEANING

3.1.6.1 PRE-CLEANING MOVABLE OBJECTS

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. PPE must be donned by all workers performing precleaning activities. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location.

3.1.6.2 PRE-CLEANING FIXED OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area.

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 13.13 - 33

09-01-15

difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

3.1.6.3 PRE-CLEANING SURFACES IN THE REGULATED AREA

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area.

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.

3.1.7 PRE-ABATEMENT ACTIVITIES

3.1.7.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.7.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 34

09-01-15

utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawl spaces(previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.

3.1.7.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation.
- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification.

3.2 REMOVAL OF PIPING ACM

3.2.1 WETTING MATERIALS

С.

- A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP's regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.
- B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water.
- C. Removal Encapsulant: Provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during disturbance equal to or greater than the amended water described above in B.

3.2.2 SECONDARY BARRIER AND WALKWAYS

A. Install as a drop cloth a 6 mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely cover floors and any walls within 10 feet (3 meters) of the area where work is

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.13 - 35

09-01-15

to done. Secure the secondary barrier with duct tape to prevent it from moving or debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag.

B. Install walkways using 6 mil black poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the primary layers from contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift.

3.2.3 WET REMOVAL OF ACM

A. Using acceptable glovebag procedures, adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time (at a minimum two hours) must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except when authorized in writing by the VPIH/CIH and VA when a greater safety hazard (e.g., electricity) is present

3.3 GLOVEBAG REMOVAL PROCEDURES

3.3.1 GENERAL

All applicable OSHA requirements and glovebag manufacturer's recommendations shall be met during glove bagging operations. In cases where live steam lines are present, the lines must be shut down prior to any work being performed on the system. No abatement work shall be conducted on live, pressurized steam lines. The Contractor may choose to use a High Temperature Glovebag in which a temperature rating ranges from 300°F to 700°F on steam lines that have recently been shut down and remain at high temperature for some time. In the case where a glovebag is not feasible, the Contractor will need to build a full negative pressure containment of sufficient size and follow all regulations as it pertains to removal.

- 1. Mix the surfactant with water in the garden sprayer, following the manufacturer's directions.
- 2. Have each employee put on a HEPA filtered respirator approved for asbestos and check the fit using the positive/negative fit check.
- 3. Have each employee put on a disposable full-body suit. Remember, the hood goes over the respirator straps.
- Check closely the integrity of the glove bag to be used. Check all seams, gloves, sleeves, and glove openings. OSHA requires the bottom of the bag to be seamless.

09-01-15

- 5. Check the pipe where the work will be performed. If it is damaged (broken lagging, hanging, etc.), wrap the entire length of the pipe in poly sheeting and "candy stripe" it with duct tape.
- 6. Attach glovebag with required tools per manufacturer's instructions.
- 7. Using the smoke tube and aspirator bulb, test 10% of glovebags by placing the tube into the water porthole (two-inch opening to glove bag), and fill the bag with smoke and squeeze it. If leaks are found, they should be taped closed using duct tape and the bag should be retested with smoke.
- 8. Insert the wand from the water sprayer through the water porthole.
- 9. Insert the hose end from a HEPA vacuum into the upper portion of the glove bag.
- 10. Wet and remove the pipe insulation.
- 11. If the section of pipe is covered with an aluminum jacket, remove it first using the wire cutters to cut any bands and the tin snips to remove the aluminum. It is important to fold the sharp edges in to prevent cutting the bag when placing it in the bottom.
- 12. When the work is complete, spray the upper portion of the bag and clean-push all residue into the bottom of the bag with the other waste material. Be very thorough. Use adequate water.
- 13. Put all tools, after washing them off in the bag, in one of the sleeves of glove bag and turn it inside out, drawing it outside of the bag. Twist the sleeve tightly several times to seal it and tape it several tight turns with duct tape. Cut through the middle of the duct tape and remove the sleeve. Put the sleeve in the next glove bag or put it in a bucket of water to decontaminate the tools after cutting the sleeve open.
- 14. Turn on the HEPA vacuum and collapse the bag completely. Remove the vacuum nozzle, seal the hole with duct tape, twist the bag tightly several times in the middle, and tape it to keep the material in the bottom during removal of the glove bag from the pipe.
- 15. Slip a disposal bag over the glove bag (still attached to the pipe). Remove the tape securing the ends, and slit open the top of the glove bag and carefully fold it down into the disposal bag. Double bag and gooseneck waste materials.

3.3.2 NEGATIVE PRESSURE GLOVEBAG PROCEDURE

1. The HEPA vacuum shall be attached and operated as needed to prevent collapse of the glovebag during the removal process.

3.4 LOCKDOWN ENCAPSULATION

3.4.1 GENERAL

Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, all piping surfaces shall be encapsulated with a bridging encapsulant.

3.4.2 SEALING EXPOSED EDGES

Seal edges of ACM exposed by removal work with two coats of encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the encapsulant.

09-01-15

3.5 DISPOSAL OF ACM WASTE MATERIALS

3.5.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.5.2 PROCEDURES

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment
- B. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures in this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP's signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.
- C. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped or HEPA vacuumed..
- D. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.6 PROJECT DECONTAMINATION

3.6.1 GENERAL

- A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.6.2 REGULATED AREA CLEARANCE

Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.6.3 WORK DESCRIPTION

Decontamination includes the duration/clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.6.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the secondary barrier of poly removed and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - 1. Critical barriers over all openings consisting of two layers of 6 mil poly which is the sole barrier between the regulated area and the rest of the building or outside.
 - 2. Decontamination facilities, if required for personnel and equipment in operating condition.

3.6.5 FIRST CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.6.6 PRE-CLEARANCE INSPECTION AND TESTING

The CPIH/CIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III) (B) (7) (d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

3.6.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES

With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification.

3.7 FINAL VISUAL INSPECTIONS AND AIR CLEARANCE TESTING

3.7.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH after the final cleaning.

3.7.2 FINAL VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.7.3 DURATION/FINAL AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH and CPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for MDH in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All additional inspection and testing costs will be borne by the Contractor.
- B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.7.4 DURATION/FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH and CPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method.
 - 2. Sampling Samples will be collected on 0.8μ MCE filters for PCM analysis. A minimum of 2000 Liters of using calibrated pumps shall be collected for clearance samples. Air samples will be collected within ten (10) feet of the glovebag operation.

09-01-15

3.7.5 CLEARANCE SAMPLING USING PCM

- A. The VPIH/CIH and CPIH/CIH will perform clearance samples as indicated by the specification.
- B. The NIOSH 7400 PCM method will be used for clearance sampling. A minimum of 2 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.

3.7.6 CLEARANCE SAMPLING USING TEM (NOT USED)

3.7.7 LABORATORY TESTING OF PCM SAMPLES

The services of an AIHA accredited laboratory will be employed by the VA and the Asbestos Contractor to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be analyzed daily by the VPIH/CIH and CPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.

3.7.8 LABORATORY TESTING OF TEM SAMPLES (NOT USED)

3.8 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.8.1 COMPLETION OF ABATEMENT WORK

After thorough decontamination, seal negative air machines with 2 layers of 6 mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:

- A. Remove all equipment, materials, and debris from the project area.
- B. Package and dispose of all asbestos waste as required. Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations.
- C. Repair or replace all interior finishes damaged during the abatement work.
- D. The VA will be notified of any waste removed from the containment prior to 24 hours.
- E. Fulfill other project closeout requirements as specified elsewhere in this specification.

3.8.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.8.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

3.8.4 RE-INSULATION (NOT USED)

ATTACHMENT #1

09-01-15

CERTIFICATE OF COMPLETION

DATE:	VA Project #:	
PROJECT NAME:	Abatement Contractor:	
VAMC/ADDRESS:		

 I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):

which took place from / / to / /

- That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all glovebag work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Date:_____

CPIH/CIH Print Name:

Abatement

Contractor

Signature/Date:

Abatement Contractor Print Name:_____

ATTACHMENT #2

09-01-15

CERTIFICATE	OF	WORKER'S	3	ACKNOWLEDGMENT
-------------	----	----------	---	----------------

PROJECT	NAME:	DATE:
PROJECT	ADDRESS:	
ABATEMEI	NT CONTRACTOR'S NAME:	

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature:

Printed Name:

09-01-15

Social Security Number:_____

Witness:_____

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

ATTACHMENT #3

09-01-15

AFFIDAVIT	OF	MEDICAL	SURVEILLANCE,	RESPIRATORY	PROTECTION	AND
TRAINING/ACCREDITATION						

VA PROJECT NAME AND NUMBER:

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Name:______Social Security Number:_____

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.

- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH/CIH:	Date:
Printed Name of CPIH/CIH:	

Signature of Contractor: _____ Date: _____

Printed Name of Contractor:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

ATTACHMENT #4

09-01-15

ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS

VA Project Location:_____

VA Project #:_____

VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature_____Date_____

Abatement Contractor Competent Person(s) _____ Date_____

- - END- - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

SECTION 02 82 13.19 ASBESTOS FLOOR TILE AND MASTIC ABATEMENT

TABLE OF CONTENTS

PART 1 - GENERAL 1
1.1 SUMMARY OF THE WORK 1
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS 1
1.1.2 EXTENT OF WORK 11
1.1.3 RELATED WORK 11
1.1.4 TASKS 11
1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES 2
1.2 VARIATIONS IN QUANTITY
1.3 STOP ASBESTOS REMOVAL 22
1.4 DEFINITIONS
1.4.1 GENERAL
1.4.2 GLOSSARY
1.4.3 REFERENCED STANDARDS ORGANIZATIONS
1.5 APPLICABLE CODES AND REGULATIONS 1011
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS 1011
1.5.2 CONTRACTOR RESPONSIBILITY 1011
1.5.3 FEDERAL REQUIREMENTS 1111
1.5.4 STATE REQUIREMENTS 1112
1.5.5 LOCAL REQUIREMENTS (NOT USED) 1112
1.5.6 STANDARDS 1112
1.5.7 EPA GUIDANCE DOCUMENTS 1212
1.5.8 NOTICES 1213
1.5.9 PERMITS 1213
1.5.10 POSTING AND FILING OF REGULATIONS 1313
1.5.11 VA RESPONSIBILITIES
1.5.12 SITE SECURITY 1314
1.5.13 EMERGENCY ACTION PLAN AND ARRANGEMENTS
1.5.14 PRE-CONSTRUCTION MEETING 1415
1.6 PROJECT COORDINATION 1516
1.6.1 PERSONNEL
1.7 RESPIRATORY PROTECTION
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM 1617
Contract No. 36C26319D0022 Station Project No. 656-19-039

1.7.2	RESPIRATORY PROTECTION PROGRAM COORDINATOR	09-01-15
	SELECTION AND USE OF RESPIRATORS	
	MINIMUM RESPIRATORY PROTECTION	
	MEDICAL WRITTEN OPINION	
	RESPIRATOR FIT TEST	
	RESPIRATOR FIT CHECK	
	MAINTENANCE AND CARE OF RESPIRATORS	
	ORKER PROTECTION	
	TRAINING OF ABATEMENT PERSONNEL	
	MEDICAL EXAMINATIONS	
	PERSONAL PROTECTIVE EQUIPMENT.	
	REGULATED AREA ENTRY PROCEDURE	
	DECONTAMINATION PROCEDURE	
	REGULATED AREA REQUIREMENTS	
1.9	DECONTAMINATION FACILITY	
	DESCRIPTION	
	GENERAL REQUIREMENTS	
	TEMPORARY FACILITIES (NOT USED)	
	PERSONNEL/EQUIPMENT DECONTAMINATION FACILITY	
1.9.5	WASTE/EQUIPMENT DECONTAMINATION PROCEDURES	19
	2 - PRODUCTS, MATERIALS AND EQUIPMENT	
2.1 MA	ATERIALS AND EQUIPMENT	2021
2.1.1	GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)	2021
2.1.2	NEGATIVE PRESSURE FILTRATION SYSTEM	2223
2.1.3	DESIGN AND LAYOUT	2223
2.1.4	NEGATIVE AIR MACHINES (HEPA UNITS)	2223
2.1.5	PRESSURE DIFFERENTIAL	2324
2.2 C	ONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA	2324
2.2.1	GENERAL	2324
2.2.3	CONTROLLING ACCESS TO THE REGULATED AREA	2425
2.2.4	CRITICAL BARRIERS	2425
2.2.5	SECONDARY BARRIERS (NOT USED)	2425
2.2.6	EXTENSION OF THE REGULATED AREA	2425
2.2.7	FIRESTOPPING (NOT USED)	24
2.3 MG	ONITORING, INSPECTION AND TESTING	2425
	GENERAL	2425
	act No. 36C26319D0022	
	on Project No. 656-19-039 oft-AE Project No. 18-116 06	5/02/2023
	02 82 13.19 - ii	

09 - 01 - 152.3.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH..... 2627 3.5.3 WORK DESCRIPTION...... 3436 Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

02 82 13.19 - iii

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

-09-01 3.6 VISUAL INSPECTION AND AIR CLEARANCE TESTING	
3.6.1 GENERAL	37
3.6.2 VISUAL INSPECTION 35	37
3.6.3 AIR CLEARANCE TESTING 35	37
3.6.4 FINAL AIR CLEARANCE PROCEDURES	37
3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE	38
3.7.1 COMPLETION OF ABATEMENT WORK	38
3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR	38
3.7.3 WORK SHIFTS	38
ATTACHMENT #1	39
ATTACHMENT #2	40
ATTACHMENT #3	41
ATTACHMENT #4 40	42

09-01-15

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos flooring materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy themselves as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Non-Friable Removal, clean-up and disposal of ACM flooring in an appropriate regulated area in the following approximate quantities:
 (12) square feet of mastic below non-asbestos 12" floor tile in second floor Corridor C2C

1.1.3 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- C. Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT.
- D. Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

- A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and Asbestos Hazard Abatement Plans for asbestos abatement work.
- B. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, and inspections.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

C. Cleaning and decontamination activities including final visual inspection and certification of decontamination.

1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design Construction Procedure. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action.

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall followup with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

09-01-15

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02" WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestos-containing materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM). Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate. **Air sample filter** - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals

St. Cloud VA Health Care System St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

09-01-15

that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some states require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA0.

Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic. **Clean room/Changing room** - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH). **Closely resemble** - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 13.19 - 5

09-01-15

one glove bag or disposal bag which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove
particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glove-like appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all monodispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 6

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

09-01-15

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR Part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PELs.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal protective equipment (PPE) - equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Pipe Tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 7

09-01-15

breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b). **Professional IH** - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) of Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5).

Assigned Protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, and III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II nonfriable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation. **Removal** - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations. **Renovation** - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

09-01-15

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) - The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work. **Visible emissions** - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/ specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems Bancroft Architects + Engineers 09-01-15 E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420 F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900 G. CS Commercial Standard of the National Institute of Standards and Technology (NIST) U. S. Department of Commerce Government Printing Office Washington, DC 20420 H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949 I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420 I. NEC National Electrical Code (by NFPA) J. NEMA National Electrical Manufacturer's Association 2101 L Street, NW Washington, DC 20037 K. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555 L. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236 M. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402 N. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800 Contract No. 36C26319D0022

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02 82 13.19 - 10

09-01-15

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specifications exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern some aspect of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910.132 Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection
 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.20 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910.151 Medical and First Aid
- B. Environmental Protection Agency (EPA)
 - 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants - Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT)
- Title 49 CFR 100 185 Transportation

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 11

09-01-15

1.5.4 STATE REQUIREMENTS

State requirements that apply to the asbestos abatement work, disposal, clearance, etc., include, but are not limited to, the following:

Minnesota Pollution Control Agency (MPCA):

- 1. The MPCA has been delegated the authority by the EPA to enforce NESHAP regulations. They may also review projects for compliance with MDH Asbestos Abatement Rules.
- Guidance Regarding Proper Containment, Shipping and Final Disposal of Asbestos Residual Materials at MPCA-Permitted Landfills (*Minnesota Rules 7035.1700*).

Minnesota Department of Labor and Industry:

- 1. Maintenance and Repair of Buildings and Equipment-Asbestos (Minnesota Rules 5205.0660).
- Demolition, Restoration, Remodeling Survey (Minnesota Rules 5207.0035).

Minnesota Department of Health:

1. Asbestos Abatement Rules (Minnesota Rules 4620.3000 to 4620.3724 and Minnesota Statute Sections 326.70 to 326.81).

1.5.5 LOCAL REQUIREMENTS (NOT USED)

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems Z88.2 -Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to, the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 12

09-01-15

- C. Asbestos Waste Management Guidance EPA 530-SW-85-007
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.
- C. At least ten (10) working days prior to commencement of work, submit "Notification of Asbestos Related Work" to:

Minnesota Pollution Control Agency Industrial Division-Asbestos Program 520 Lafayette Road

St. Paul, MN 55155-4194

1.5.9 PERMITS

- A. The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.
- At least five (5) calendar days prior to commencement of work, submit "Notification of Intent to Perform an Asbestos Abatement Project" with a copy of a signed contract or other written evidence of the total cost of the abatement project and a check in the amount of one percent of the total cost of the abatement project, made payable to "Minnesota Department of Health", to:

Minnesota Department of Health Division of Environmental Health Asbestos/Lead Compliance Unit P.O. Box 64497 St. Paul, MN 55164-0497 651-201-4610/4620

The Contractor shall list the CPIH as the AIR MONITORING CONTRACTOR on the above referenced notification.

1.5.10 POSTING AND FILING OF REGULATIONS

A. Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

Prior to commencement of work:

A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 13

09-01-15

to starting work for relocation of desks, files, equipment and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.

1.5.12 SITE SECURITY

- A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. Access to the regulated area shall be through of a critical barrier doorway. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed.
- E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA security guards.

1.5.13 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a);(b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 14

09-01-15

schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.

- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.
- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the Asbestos Hazard Abatement Plans during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.14 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VA Certified Industrial Hygienist (VPCIH) to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the prestart meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person(s) is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person(s) shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).

09-01-15

- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - 2. Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - 3. Decontamination area set-up/layout and decontamination procedures for employees;
 - 4. Abatement methods/procedures and equipment to be used;
 - 5. Personal protective equipment to be used;
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

PROJECT COORDINATION 1.6

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized on-site shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive Asbestos Hazard Abatement Plans for asbestos work; and has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and

09-01-15

refreshers; and has all required OSHA documentation related to medical and respiratory protection.

- 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete Asbestos Hazard Abatement Plan for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.
- 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the Asbestos Hazard Abatement Plans of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; and has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c) (1) (i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a half face, HEPA filtered, air purifying respirator when fiber levels are maintained consistently at or below $0.1 \, \text{f/cc}$. A higher level of respiratory protection may be provided

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 13.19 - 17

09-01-15

or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current qualitative/quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Quantitative fit tests shall be done for PAPRs which have been put into a motor/blower failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and Care of Respirators.

1.7.9 SUPPLIED AIR SYSTEMS

If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 -Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". The competent person on site will be responsible for the supplied air system to ensure the safety of the worker.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 18

09-01-15

certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m) (4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle. Worker protection shall meet the most stringent requirements.

1.8.4 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.5 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove all disposable PPE and dispose of in a disposal bag provided in the regulated area.
- B. Carefully decontaminate and clean the respirator. Put in a clean container/bag.

1.8.6 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for Class I regulated areas at 29 CFR 1926.1101 (e) are met applicable to Class II work. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

09-01-15

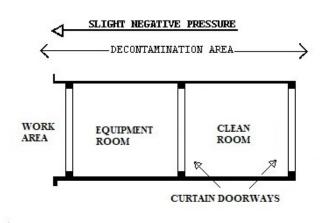
Provide each regulated area with separate personnel/equipment decontamination facility (P/EDF). Ensure that the P/EDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the P/EDF.

1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the P/EDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the P/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the P/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF (NOT USED)

•


1.9.4 PERSONNEL/EQUIPMENT DECONTAMINATION FACILITY (P/EDF)

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the equipment room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so from the outside with street clothing on. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated

09-01-15

from the regulated area, the cleanroom and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift.

3. The P/EDF shall be as follows: Clean room at the entrance followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.

1.9.5 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES:

In the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Equipment Room after visual inspection. When passing anything into the Equipment Room, close all doorways of the P/EDF, other than the doorway between the regulated area and the Equipment Room. Keep all outside personnel clear of the P/EDF. Once inside the Equipment Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Clean Room. Close all doorways except the doorway between the Equipment Room and the Clean Room. Workers from the Exterior shall enter the Clean Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Equipment room or regulated area.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 21

09-01-15

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mil shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 Hazard Communication in the pre-project submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.1.2 NEGATIVE PRESSURE FILTRATION SYSTEM

The Contractor shall provide enough HEPA negative air machines to continuously maintain a pressure differential of -0.02" water column gauge (WCG). The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to continuously maintain a pressure differential of -0.02" WCG. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area.

2.1.3 DESIGN AND LAYOUT

- A. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - 1. Method of supplying power to the units and designation/location of the panels.
 - Description of testing method(s) for correct air volume and pressure differential.
 - 3. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch.

2.1.4 NEGATIVE AIR MACHINES (HEPA UNITS)

- A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.
- B. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.
- C. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97%. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

- D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 micron or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 micron or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps.
- E. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation.
- F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriters Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.
- H. It is essential that replacement HEPA filters be tested using an "inline" testing method, to ensure the seal around the periphery was not damaged during replacement. Damage to the outer HEPA filter seal could allow contaminated air to bypass the HEPA filter and be discharged to an inappropriate location. Contractor will provide written documentation of test results for negative air machine units with HEPA filters changed by the contractor or documentation when changed and tested by the contractor filters.

2.1.5 PRESSURE DIFFERENTIAL

The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of -0.02" water column gauge. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e) (5) (i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification.

2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

2.2.1 GENERAL

A. Using critical barriers, seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result

09-01-15

of the work, shall immediately stop work and clean up the contamination at no additional cost to the VA.

B. Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects remaining in the regulated area shall be completely covered with 2 layers of 6-mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area.

2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel/equipment decontamination facility (P/EDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

2.2.4 CRITICAL BARRIERS

Completely separate any operations in the regulated area from adjacent areas using 2 layers of 6 mil fire retardant poly and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the regulated area. Heat must be shut off any objects covered with poly.

2.2.5 SECONDARY BARRIERS (NOT USED)

2.2.6 EXTENSION OF THE REGULATED AREA

If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. Decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

2.2.7 FIRESTOPPING (NOT USED)

2.3 MONITORING, INSPECTION AND TESTING

2.3.1 GENERAL

A. Perform throughout abatement work air monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the Employee exposure to asbestos must not exceed 0.1 fibers per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 25

09-01-15

and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA and MDH requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.

- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. Performance of services provided by the VPIH/CIH shall not supersede nor eliminate the Contractor's responsibilities as required under MDH Asbestos Abatement Rules. The VPIH/CIH will perform the necessary air monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, air monitoring and testing for the safety of their employees and building occupants, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.
- C. If fibers counted by the VPIH/CIH and/or CPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH/CIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative.

2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - 1. Task 1: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 82 13.19 - 26

09-01-15

- 2. Task 2: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, air monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
- 3. Task 3: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc.
- 4. Task 4: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications.
- 5. Task 5: Issue certificate of decontamination for each regulated area and project report.
- B. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The air monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.3.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the area regulated is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent, a Minnesota Air Sampling Course and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor (or Abatement Worker) and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101 (f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample Contract No. 36C26319D0022

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 82 13.19 - 27

09-01-15

collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.4 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of this project and the specifications. The AHAP(s) shall be submitted for review and approval to the VA prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAP(s) are:

- A. Minimum Personnel Qualifications
- B. Emergency Action Plan/Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements Containment Barriers/Isolation of Regulated Area
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Negative Pressure Systems Requirements
- I. Monitoring, Inspections, and Testing
- J. Removal Procedures for ACM
- K. Removal of Contaminated Soil (if applicable)
- L. Encapsulation Procedures for ACM
- M. Disposal of ACM waste/equipment
- N. Regulated Area Decontamination/Clean-up
- O. Regulated Area Visual and Air Clearance
- P. Project Completion/Closeout

2.5 SUBMITTALS

2.5.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate.

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

09-01-15

Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.

- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, and fire extinguishers.
 - 4. Respirators, protective clothing, personal protective equipment.
 - 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications, permits and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. And area or clearance air monitoring in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; and Completion Date
 - 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and

09-01-15

maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.

- CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAP(s) developed; medical opinion; and current respirator fit test.
- 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of the AHAP incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and Asbestos Hazard Abatement Plans; copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS, and application instructions.

2.5.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWAs/ELs. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
- 4. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis. Contract No. 36C26319D0022

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

PART 3 - EXECUTION

3.1 PRE-ABATEMENT ACTIVITIES

3.1.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of AEQA 10-95 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM may remain undetected. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window

09-01-15

sills; water/sewer lines; electrical conduit coverings; crawl spaces(previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.

- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination.
- D. If present and required, remove and dispose of carpeting from floors in the regulated area. If ACM floor tile is attached to the carpet while the Contractor is removing the carpet that section of the carpet will be disposed of as asbestos waste.

3.1.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP, especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance.
- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations.

3.2 REGULATED AREA PREPARATIONS

3.2.1 OSHA DANGER SIGNS

Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed the PEL. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.

3.2.2 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF), if required. All other means of access shall be eliminated and OSHA Danger demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly sheeting to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

3.2.3 SHUT DOWN - LOCK OUT ELECTRICAL

Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Ensure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.

3.2.4 SHUT DOWN - LOCK OUT HVAC

Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area.

Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil poly disposal bags for disposal as asbestos waste.

3.2.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.2.6 WATER FOR ABATEMENT

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system.

3.2.7 PREPARATION PRIOR TO SEALING OFF

Place all tools, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. Remove all uncontaminated removable furniture, equipment and/or supplies from the regulated area before commencing work, or completely cover with 2 layers of 6-mil fire retardant poly sheeting and secure with duct tape. Lock out and tag out any HVAC systems in the regulated area.

3.2.8 CRITICAL BARRIERS

Completely separate any openings into the regulated area from adjacent areas using fire retardant poly at least 6 mils thick and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Heat must be shut off any objects covered with poly

3.2.9 FLOOR BARRIERS

If floor removal is not being done, all floors in the regulated area shall be covered with 2 layers of 6 mil fire retardant poly and brought up the wall 12 inches

09-01-15

3.2.10 PRE-CLEANING MOVABLE OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location.

3.2.11 PRE-CLEANING FIXED OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

3.2.12 PRE-CLEANING SURFACES IN THE REGULATED AREA

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.

3.2.13 EXTENSION OF THE REGULATED AREA

If the regulated area barrier is breached in any manner that could allow the passage of asbestos fibers or debris, the Competent Person shall immediately stop work, continue wetting, and proceed to extend the regulated area to enclose the affected area as per procedures described in this specification. If the affected area cannot be enclosed, decontamination measures and cleanup shall start immediately. All personnel shall be isolated from the affected area until decontamination/cleanup is completed as verified by visual inspection and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

air monitoring. Air monitoring at completion must indicate background levels.

3.3 REMOVAL OF CLASS II FLOORING

3.3.1 GENERAL

All applicable requirements of OSHA, EPA, and DOT shall be followed during Class II work. Keep materials intact; do not disturb; wet while working with it; wrap as soon as possible with 2 layers of 6 mil plastic for disposal.

3.3.2 REMOVAL OF FLOORING MATERIALS

A. All requirements of OSHA Flooring agreement provisions shall be followed: 1. The Contractor shall provide enough HEPA negative air machines to effect > - 0.02" WCG pressure. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area. The contractor shall use double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2" pressure drop across the filters.

2. Flooring shall be removed intact, as much as possible. Do not rip or tear flooring.

- 3. Mechanical chipping or sanding is not allowed.
- 4. Flooring shall be removed with hand tools and wet methods..
- 5. Wet clean and HEPA vacuum the floor before and after removal of flooring.
- 6. All waste must be contained in the regulated area.
- 7. Package all waste in 6 mil poly lined fiberboard drums.

3.3.3 REMOVAL OF MASTIC

- A. All chemical mastic removers must be low in volatile organic compound (VOC) content, have a flash point greater than 200° Fahrenheit, contain no chlorinated solvents, and comply with California Air Resources Board (CARB) thresholds for VOCs (effective January 1, 2010).
- B. A negative air machine as required under flooring removal shall be provided.
- C. Follow all manufacturers' instructions in the use of the mastic removal material.
- D. Package all waste in 6 mil poly lined fiberboard drums.
- E. Prior to application of any liquid material, check the floor for penetrations and seal before removing mastic.

3.4 DISPOSAL OF CLASS II WASTE MATERIAL

3.4.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

09-01-15

3.5 PROJECT DECONTAMINATION

3.5.1 GENERAL

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment,
- B. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- C. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- D. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.5.2 REGULATED AREA CLEARANCE

Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.5.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.5.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the secondary barrier of poly removed and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - Critical barriers over all openings consisting of two layers of 6 mil poly which is the sole barrier between the regulated area and the rest of the building or outside.
 - 2. Decontamination facilities, if required for personnel and equipment in operating condition.

3.5.5 CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09-01-15

3.6 VISUAL INSPECTION AND AIR CLEARANCE TESTING

3.6.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH after the final cleaning.

3.6.2 VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.6.3 AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. 5 PCM samples shall be collected for clearance and a minimum of two field blanks. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All additional inspection and testing costs will be borne by the Contractor.
- B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.6.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method.
 - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8μ MCE filters for PCM analysis. A minimum of 2000 Liters of using calibrated pumps shall be collected for clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.

09-01-15

3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.7.1 COMPLETION OF ABATEMENT WORK

- A. After thorough decontamination, complete asbestos abatement work upon meeting the regulated area clearance criteria and fulfilling the following:
 - 1. Remove all equipment, materials, and debris from the project area.
 - 2. Package and dispose of all asbestos waste as required.
 - 3. Repair or replace all interior finishes damaged during the abatement work.
 - 4. Fulfill other project closeout requirements as specified elsewhere in this specification.

3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.7.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

ATTACHMENT #1

09-01-15

CERTIFICATE OF COMPLETION

DATE:	VA Project #:	
PROJECT NAME:	Abatement Contractor:	
VAMC/ADDRESS:		

 I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):

which took place from / / to / /

- That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all abatement work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Date:

CPIH/CIH Print Name:

Abatement Contractor Signature/Date:_____

Abatement Contractor Print Name:

ATTACHMENT #2

09-01-15

CERTIFICATE	OF	WORKER'S	3	ACKNOWLEDGMENT
-------------	----	----------	---	----------------

PROJECT	NAME:	DATE:
PROJECT	ADDRESS:	
ABATEMEI	NT CONTRACTOR'S NAME:	

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature:

Printed Name:

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

09-01-15

Social	Security	Number:	

Witness:_____

ATTACHMENT #3

AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION

VA PROJECT NAME AND NUMBER: _____

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Name:______Social Security Number:_____

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.

- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

	Signature of CPIH/CIH:	Date:	
--	------------------------	-------	--

Printed Name of CPIH/CIH:

Signature of Contractor:_____Date:_____

Printed Name of Contractor:

ATTACHMENT #4

09-01-15

ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS

VA Project Location:_____

VA Project #:_____

VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature_____Date_____

Abatement Contractor Competent Person(s) _____ Date ______ Date _____

01-01-21

SECTION 02 83 33.13 LEAD-GLAZED CERAMIC TILE REMOVAL AND DISPOSAL PLAN

PART 1 - GENERAL

1.1 SUMMARY

 Removing and disposal of approximately 3,545 square feet of interior lead-based glazed ceramic wall tiles as identified in the drawings with controls needed to limit occupational and environmental exposure to lead hazards. This quantity is for informational purposes only and are based on the best information available at the time of the removal plan preparation. The Contractor shall satisfy themselves with actual quantity to be removed. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.

1.2 RELATED WORK

- A. Demolition: Section 02 41 00, DEMOLITION.
- B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Hazardous Material Abatement.
- C. Hazardous Material Abatement: Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT.
- D. Hazardous Material Abatement: Section 02 82 13.19, ASBESTOS FLOOR TILE AND MASTIC ABATEMENT.

1.3 DEFINITIONS

- A. Action Level: Employee exposure, without regard to use of respirator, to an airborne lead concentration of 30 micrograms(μ) per cubic meter (m³) of air determined as an 8-hour Time-Weighted Average (TWA). As used in this section, "30 micrograms per cubic meter of air" refers to OSHA 29 CFR 1926.62 Lead in Construction Action Level (AL).
- B. Area Monitoring: Sampling of lead concentrations within lead control area and inside physical boundaries which are representative of airborne lead concentrations which may reach breathing zone of personnel potentially exposed to lead.

- C. Breathing Zone: Area within hemisphere, forward of shoulders, with 150 mm to 225 mm (6 to 9 inches) radius and center at nose or mouth of employee.
- D. Certified Industrial Hygienist (CIH): As used in this section, refers to an Industrial Hygienist Certified in the Comprehensive Practice of Industrial Hygiene by the American Board of Industrial Hygiene and Board for Global EHS Credentialing, employed by Contractor.
- E. Certified Lead Firm. "Certified Lead Firm" means a person that employs individuals to perform regulated lead work, with the exception of renovation, and is certified by the commissioner under Minnesota Statutes section 144.9505.
- F. Change Rooms and Shower Facilities: Rooms within designated physical boundary around lead control area equipped with separate storage facilities for clean protective work clothing and equipment and for street clothes which prevents cross contamination.
- G. Competent Person: Person capable of identifying lead hazards in work area and authorized by contractor to take corrective action. Meets the OSHA definition of Competent Person.
- H. Decontamination Room: Room for removal of contaminated personal protective equipment (PPE).
- I. Eight-Hour Time Weighted Average (TWA): Airborne concentration of lead averaged over 8-hour workday to which an employee is exposed.
- J. High Efficiency Particulate Air (HEPA) Filter Equipment: HEPA filtered vacuuming equipment with UL 586 filter system capable of collecting and retaining lead-contaminated paint dust. HEPA filter means 99.97 percent efficient against 0.3 micron (0.012 mil) size particles.
- K. Lead: Metallic lead, inorganic lead compounds, and organic lead soaps. Excluded from this definition are other organic lead compounds.
- L. Lead Control Area: Enclosed area or structure with full containment to prevent spreading lead dust, and debris from lead-based glazed ceramic wall tile removal operations. Lead control area is isolated by physical boundaries to prevent unauthorized entry of personnel.
- M. Lead Permissible Exposure Limit (PEL): Fifty micrograms per cubic meter of air (50 μ g/m³) determined as an 8-hour TWA as determined by 29 CFR Part 1926.62. When employee is exposed for more than 8-hours per

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

02 83 33.13 - 2

work day, determine PEL by the following formula. PEL micrograms/cubic meter (parts per million) of air = 400/No. of hrs. worked per day.

- N. Personnel Monitoring: Sampling of lead concentrations within employee breathing zone to determine 8-hour time weighted average concentration according to 29 CFR Part 1926.62. Take samples that are representative of the various employee's work tasks.
- O. Physical Boundary: Area physically roped or partitioned off around enclosed lead control area to limit unauthorized entry of personnel. As used in this section, "inside boundary" shall mean same as "outside lead control area."

1.4 APPLICABLE PUBLICATIONS

A. Comply with references to extent specified in this section.

- B. American National Standards Institute (ANSI):
 - Z9.2-2018.....Fundamentals Governing the Design & Operation of Local Exhaust Ventilation Systems.
 - 2. Z88.6-2006 Respiratory Protection
- C. Code of Federal Regulations (CFR):
 - 29 CFR Part 1910.....Occupational Safety and Health Standards. 29 CFR Part 1926......Safety and Health Regulations for Construction. 40 CFR Part 260..... Hazardous Waste Management System: General. 40 CFR Part 261.....Identification and Listing of Hazardous Waste. 40 CFR Part 262.....Standards Applicable to Generators of Hazardous Waste. 40 CFR Part 263.....Standards Applicable to Transporters of Hazardous Waste. 40 CFR Part 264.....Standards for Owners and Operations of Hazardous Waste Treatment, Storage, and Disposal Facilities. 40 CFR Part 265.....Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities. 40 CFR Part 268.....Land Disposal Restrictions. 49 CFR Part 172......Hazardous Material Table, Special Provisions, Hazardous Material Communications, Emergency Response Information, and Training Requirements, and Security Plans.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 83 33.13 - 3

06/02/2023

01-01-21

01-01-21

49 CFR Part 178.....Specifications for Packaging.

- D. National Institute for Occupational Safety And Health(NIOSH):
 - 1. NIOSH Pocket Guide to Chemical Hazards, Lead.
- E. Occupation Safety And Health Administration (OSHA):
 - 1. OSHA Booklet 3142, Lead in Construction
- F. Underwriters Laboratories (UL):

586-09..... Air Filter Units.

1.5 PRE-REMOVAL MEETINGS

- A. Conduct pre-removal meeting at project site before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative (COR).
 - b. Certified Industrial Hygienist.
 - c. Certified Lead Firm's Competent Person(s) who will be on-site.
 - d.
 - 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Respiratory protection program.
 - b. Hazard communication program.
 - c. Hazardous waste management plan.
 - d. Safety and health regulation compliance.
 - e. Employee training.
 - f. Removal schedule.
 - g. Removal sequence.
 - h. Preparatory work.
 - i. Protection before, during, and after removal.
 - j. Removal.
 - k. Inspecting and testing.
 - 1. Other items affecting successful completion.
 - 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTALS

A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 83 33.13 - 4

01-01-21

- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - a. Paint removal products.
 - b. Vacuum filters.
 - c. Respirators.
 - 2. Safety Data Sheet for each paint removal product.
 - 3. Installation instructions.
 - a. Paint removal products.
- C. Test Reports: Submit testing laboratory reports.
 - Submit air monitoring results within three working days, signed by testing laboratory employee performing laboratory analysis of the samples, with a chain of custody containing the signatures of the CIH or employee performing the air monitoring.
- D. Certificates: Certify completed lead training.
 - 1. Submit certificate for each employee signed and dated by CIH and employee stating employee was trained.
- E. Qualifications: Substantiate qualifications comply with the removal plan.
 - 1. Certified Lead Firm.
 - 2. Testing laboratory.
 - a. Name, address, and telephone number.
 - b. Current evidence of participation in American Industrial Hygiene Association (AIHA) Laboratory Accreditation Program (LAP), LLC, Environmental Lead Laboratory Accreditation Program (ELLAP).
 - c. Copy of current AIHA accreditation certificate.
 - 3. Industrial hygienist.
 - a. Name, address, and telephone number.
 - b. Resume showing previous experience.
 - c. Copy of current ABIH CIH certification.
 - 4. Paint disposal facility.
 - a. Name, address, and telephone number.
 - b. Current license or authorization to receive and dispose lead contaminated waste.
- F. Record Documents:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 83 33.13 - 5

01-01-21

- 1. Completed and signed waste manifest from waste transporter.
- 2. Paint disposal facility receipts and disposition reports.
- 3. Certification of medical examinations.
- 4. Medical Opinion that employee is qualified to wear a respirator, that employees has been trained and fit tested for the respirator.
- 5. Employee training certification.

1.7 QUALITY ASSURANCE

A. Safety and Health Regulation Compliance:

- Comply with laws, ordinances, rules, and regulations of Federal, State, and Local authorities having jurisdiction regarding removing, handling, storing, transporting, and disposing lead waste materials.
 a. Comply with applicable requirements of 29 CFR Part 1926.62.
 - b. Notify the COR and request resolution of conflicts between regulations and specified requirements before starting work.
- 2. Comply with the following local laws, ordinances, criteria, rules and regulations regarding removing, handling, storing, transporting, and disposing lead-contaminated materials:
 - a. Minnesota Statutes 144.9501-144.9512.
 - b. Minnesota Administrative Rules 4761.2000-4761.2700.
- B. Certified Lead Firm: Experienced Contractor, registered or licensed by applicable state agency regulating lead-based paint removal.
- C. Testing Laboratory: State certified independent testing laboratory experienced in airborne lead analysis and reporting.
 - Successful participant in American Industrial Hygiene Association (AIHA) Laboratory Accreditation Program (LAP), LLC, Environmental Lead Laboratory Accreditation Program (ELLAP).
- D. Certified Industrial Hygienist: Certified as CIH by American Board of Industrial Hygiene in comprehensive practice and responsible for:
 - 1. Certify Training.
 - 2. Review and approve lead-based glazed ceramic tile removal plan for conformance to applicable referenced standards.
 - Inspect lead-based glazed ceramic tile removal work for conformance with approved plan.
 - 4. Direct monitoring.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- 5. Ensure work is performed according to the lead-based ceramic tile removal plan.
- Ensure personnel and environment hazardous exposures are adequately controlled.
- E. Paint Disposal Facility: State certified disposal facility qualified to receive and dispose of lead-based paint or lead contaminated demolition debris.
- F. Lead-based Glazed Ceramic Tile Removal Plan:
 - 1. Submit detailed, site-specific plan describing lead-based glazed ceramic wall tile removal procedures.
 - Include sketch showing location, size, and details of lead control areas, decontamination rooms, change rooms, shower facilities, and mechanical ventilation system.
 - 3. Include eating, drinking, and restroom procedures, interface of trades, work sequencing, collected wastewater and paint debris disposal plan, air sampling plan, respirators, protective equipment, and detailed description of containment methods ensuring airborne lead concentrations do not exceed action level outside lead control area.
 - a. Eating, drinking, and smoking are not acceptable within lead control area.
 - 4. Include air sampling, training and strategy, sampling methodology, frequency, duration, and qualifications of air monitoring personnel.
- G. Respiratory Protection Program: Establish and implement program required by 29 CFR Part 1910.134 and 29 CFR Part 1926.62.
 - 1. Provide each employee negative pressure or other appropriate respirator.
 - Respirator fit each employee's respirator at initial fitting and at least annually thereafter, as required by 29 CFR Part 1910.134 Respiratory Protection.
- H. Hazard Communication Program: Establish and implement program required by 29 CFR Part 1910.1200 which is the same as 29 CFR 1926.59.
- I. Hazardous Waste Management Plan: Establish and implement plan according to applicable requirements of Federal, State, and Local hazardous waste regulations including the following:
 - 1. Identification of hazardous wastes associated with work.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 83 33.13 - 7

01-01-21

- 2. Estimated quantities of generated and disposed waste.
- Names and qualifications of each contractor transporting, storing, treating, and disposing wastes. Include facility location and 24hour point of contact.
- Names and qualifications (experience and training) of personnel working on-site with hazardous wastes.
- 5. List of required waste handling equipment including cleaning, volume reduction, and transport equipment.
- Spill prevention, containment, and cleanup contingency implementation measures.
- 7. Work plan and schedule for waste containment, removal, and disposal with daily waste cleaned up and containerization.
- 8. Hazardous waste disposal cost.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 ACCESSORIES

- A. Waste Collection Drums: 49 CFR Part 178; Type 1A2, steel, removable head, 200 L (55 gal.) capacity, capable of containing waste without loss.
- B. Vacuum Cleaner: HEPA filtered type.
- C. Scrapers:
 - 1. Metal type for use on metal, concrete, and masonry surfaces.
 - 2. Plastic type for use on wood, plaster, gypsum board, and other surfaces.
- D. Rinse Water: Potable.
- E. Cleaning Cloths: Cotton.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before exposure to lead-contaminated dust, provide workers with comprehensive medical examination required by 29 CFR Part 1926.62 (j) Medical Surveillance.
- B. Maintain complete and accurate employee medical records according to 29 CFR Part 1910.1020.

- C. Train each employee performing paint removal, disposal, and air sampling operations according to 29 CFR Part 1926.62.
 - Certify training is completed before employee is permitted to work on project and enter lead control area.

3.2 PREPARATION

- A. Protect existing work indicated to remain.
 - Perform removal work without damaging and contaminating adjacent work.
 - 2. Restore damage and contamination to original condition.
- B. Notify Contracting Officer 20 days before starting paint removal work.
- C. Lead Control Area Requirements:
 - Contain lead-based glazed ceramic wall tile demolition and removal operations using negative pressure full containment system with minimum one change room and HEPA filtered exhaust.
- D. Boundary Requirements: Provide physical boundaries around lead control areas by roping off areas designated on drawings, or providing curtains, portable partitions or other enclosures to ensure that airborne lead concentrations do not meet or exceed action level outside of lead control area.
- E. Heating, Ventilating and Air Conditioning (HVAC) Systems: Shut down, lock out, and isolate HVAC systems supplying exhausting, and passing through lead control areas. Seal HVAC inlets and outlet within lead control area with 6-mil plastic sheet and tape. Tape seal seams in HVAC components passing through lead control area.
- F. Change Room and Shower Facilities: Provide clean change rooms and shower facilities within physical boundary around lead control area according to 29 CFR Part 1926.62.
- G. Mechanical Ventilation System:
 - 1. Provide ventilation system to control personnel exposure to lead using HEPA equipped negative air machines.
 - Design, construct, install, and maintain HEPA filtered fixed local exhaust ventilation system according to ANSI Z9.2 and approved by CIH.
 - 3. Exhaust ventilation air to exterior wherever possible.
 - 4. When exhaust ventilation air must be recirculated into work area, provide HEPA filter with reliable back-up filter and controls to

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 83 33.13 - 9

06/02/2023

01-01-21

monitor lead concentration in return air and to bypass recirculation system automatically when system fails.

- H. Personnel Protection: Provide and use required protective clothing and equipment within lead control area.
- I. Warning Signs: Provide warning signs complying with 29 CFR Part 1926.62 at lead control area approaches. Locate signs so personnel read signs and take necessary precautions before entering lead control area.

3.3 WORK PROCEDURES

- A. Remove lead-based glazed ceramic wall tiles according to approved lead-based glazed ceramic tile removal plan.
 - Remove lead-based glazed ceramic wall tiles within a negative pressure full containment system and in conjunction with asbestos abatement when applicable.
 - Perform work only in presence of CIH or Industrial Hygienist (IH) Technician under direction of CIH ensuring continuous inspection of work in progress and direction of air monitoring activities.
 - 3. Handle, store, transport, and dispose lead or and lead contaminated waste according to 40 CFR Part 260, 40 CFR Part 261, 40 CFR Part 262, 40 CFR Part 263, 40 CFR Part 264, and 40 CFR Part 265. Comply with land disposal restriction notification requirements as required by 40 CFR Part 268.
- B. Use procedures and equipment required to limit occupational and environmental lead exposure when lead-based paint is removed according to 29 CFR Part 1926.62.
- C. Dispose removed lead contaminated debris and waste according to Environmental Protection Agency (EPA), federal, state, and local requirements.
- D. Personnel Exiting Procedures:
 - When personnel exit lead control area, comply with the following procedures:
 - a. Vacuum exposed clothing surfaces.
 - b. Remove protective clothing and equipment in decontamination room.Place clothing in approved impermeable disposal bag.
 - c. Shower.
 - d. Dress in clean clothes before leaving lead control area.
- E. Monitoring General:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

02 83 33.13 - 10

01-01-21

01-01-21

- Monitor airborne lead concentrations according to
 29 CFR Part 1910.1025by testing laboratory as directed by CIH.
- 2. Take personal air monitoring samples on employees anticipated to have greatest exposure risk as determined by CIH. Additionally, take air monitoring samples on minimum 25 percent of work crew or minimum of two employees, whichever is greater, during each work shift.
- 3. Submit results of air monitoring samples, signed by CIH, within 24 hours after taking air samples. Notify the COR immediately of lead exposure at or exceeding action level outside of lead control area.
- F. Monitoring During Removal:
 - Perform personal and area monitoring during entire removal operation.
 - Conduct area monitoring at physical boundary daily for each work shift to ensure unprotected personnel are not exposed above action level anytime.
 - 3. Stop work when outside boundary lead levels meet or exceed action level. Notify the COR immediately.
 - 4. Correct conditions causing increased lead concentration as directed by CIH.
 - Review sampling data collected during work stoppage to determine if conditions require additional work method modifications as determined by CIH.
 - 6. Resume removal when approved by CIH.

3.4 LEAD-BASED GLAZED CERAMIC TILE REMOVAL

- A. Remove lead-based glazed ceramic wall tile from interior walls within areas indicated on drawings completely exposing substrate. Minimize damage to substrate. Remove lead-based glazed ceramic wall tile and substrate from exterior walls within areas indicated on drawings.
- B. Comply with removal processes described in the lead glazed ceramic tile removal plan.
- C. Lead-Based Glazed Ceramic Wall Tile Removal: Select processes for each application to minimize work area lead contamination and waste.

D.

3.5 FIELD QUALITY CONTROL

A. Field Tests: Performed by the CIH.

01-01-21

- B. Perform sampling and testing for:
 - 1. Lead in Air monitoring per OSHA requirements.
 - 2. Lead dust wipe clearance sampling.

3.6 CLEANING AND DISPOSAL

SPEC WRITER NOTE: Verify with Industrial Hygienist if wet mopping work area surfaces is necessary.

- A. Cleaning:
 - Maintain lead control area surfaces free of accumulating debris and dust. Confine dust, debris, and waste to work area.
 - Clean the work area of visible lead debris contamination by vacuuming with a HEPA filtered vacuum cleaner and wet moping or wet wiping the work area. Do not dry sweep or use compressed air to clean up the work area.
 - HEPA vacuum clean and wet wipe with detergent solution work area daily, at end of each shift, and when lead-based glazed ceramic wall tile removal operation is complete.
- B. CIH Certification: Certify in writing that inside and outside lead control area air monitoring samples are less than action level, employee respiratory protection was adequate, the work was performed according to 29 CFR Part 1926.62, and no visible accumulations of lead-based glazed ceramic wall tile and dust remain on worksite and lead clearance wipes pass the clearance testing criteria.
 - The CIH shall collect one (1) lead dust wipe sample for every 2,000 square feet of floor space within the work area and one (1) lead dust wipe sample from the common entry/exit route of the work area, but outside of the work area.
 - a. A floor sealant may be applied upon completion of cleaning activities and prior to the collection of clearance dust wipes.
 - b. Clearance dust levels must meet the Environmental Protection Agency (EPA) clearance level of ten (10) micrograms per square foot (µg/ft2) on floors.
 - Do not remove lead control area or roped-off boundary and warning signs before the COR's receipt of CIH's certification.
 - 3. Re-clean areas showing dust or residual lead debris.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02 83 33.13 - 12

C. Testing: Where indicated and when directed by the COR, test lead-based paint residue and used abrasive according to 40 CFR Part 261 for hazardous waste.

- D. Waste Collection:
 - Collect lead-contaminated materials including waste, scrap, debris, bags, containers, equipment, and clothing, which may produce airborne lead contamination.
 - 2. Place lead contaminated materials in waste disposal drums. Label each drum identifying waste type according to 49 CFR Part 172 and date waste materials were first put into drum. Obtain and complete the Uniform Hazardous Waste Manifest forms. Comply with land disposal restriction notification requirements required by 40 CFR Part 268.
 - 3. Coordinate temporary storage location on project site with the COR.

E. Waste Disposal:

- Do not store hazardous waste drums in temporary storage location longer than 90 calendar days from drum label date.
- 2. Remove, transport, and deliver drums to paint disposal facility.
 - a. Obtain signed receipt including date, time, quantity, and description of materials received according to 40 CFR Part 262.
 - b. Obtain final report of materials disposition after disposal completion.

- - - E N D - - -

01-01-21

DIVISION 04

01-01-21

SECTION 04 01 00 MAINTENANCE OF MASONRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Repointing existing damaged masonry joints at new penetrations in exterior walls and as identified in the drawings.
 - Replacing existing damaged masonry units at new penetrations at exterior walls and as identified in the drawings.

1.2 RELATED WORK

A. Section 04 05 13, MASONRY MORTARING: Mortars for new masonry.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - C67/C67M-20.....Sampling and Testing Brick and Structural Clay Tile.
 - C144-18..... Aggregate for Masonry Mortar.
 - C150/C150M-20.....Specification for Portland Cement.
 - C207-18 Hydrated Lime for Masonry Purposes
 - C216-19Facing Brick (Solid Masonry Units Made from Clay or Shale)
 - C270-19ae1.....Mortar for Unit Masonry

C295/C295M-19.....Petrographic Examination of Aggregates for Concrete

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Replacement units indicating manufacturer recommendation for each application.
- C. Samples:
 - Pointing Mortar: Molded, 150 mm (6 inches) long for each type, texture, and color.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04 01 00 - 1

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

01-01-21

- D. Test reports:
 - 1. Preconstruction test results of existing masonry mortar and units.
 - 2. Recommended mortar mix and mortar materials sources.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Documented experience in completion of work, similar in design, material, and extent specified.
- B. Preconstruction Testing:
 - 1. Existing Brick: according to ASTM C67.
 - 2. Existing Mortar: according to ASTM C295/C295M.
 - a. Provide mortar mix compatible with existing and/or mortar material sources as required to match existing color and texture.
- C. Mockups: Prepare a separate mockup panel, minimum 4'-0''x4'-0'' in size, demonstrating quality and aesthetics of tuck pointing, masonry unit replacement, and cleaning.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store materials covered, protected from weather, and elevated above grade.
 - 1. Prevent contamination of aggregates.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - 1. Cold Weather Requirements: Maintain mortar ingredients and substrate within temperature range between 4 degrees C (40 degrees F) and 49 degrees C (120 degrees F) when outside temperature is less than 4 degrees C (40 degrees F).
 - 2. Hot Weather Requirements: Protect mortar-joint from evaporation of moisture from mortar material. When required, provide adequately shaded work area.

01-01-21

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Mortar Components:
 - 1. Hydrated Lime: ASTM C207, Type S.
 - 2. Aggregate: ASTM C144.
 - 3. Portland Cement: ASTM C150/C150M, Type I.
 - 4. Water: Potable, free of substances that are detrimental to grout, masonry, and metal.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Match existing masonry wall bricks and mortar in size, texture, and color. Match bond pattern of existing. Provide two-sided brick at any exposed edges of new openings.
- B. Provide each product from one manufacturer and from one production run.

2.3 REPLACEMENT MASONRY UNITS

- A. Face Brick:
 - 1. ASTM C216, matching existing.
 - 2. Efflorescence: Rated slight efflorescent when tested according to ASTM C67.
- B. Other Masonry Units: Match existing.

2.4 MIXES

- A. Tuck Pointing Mortar: ASTM C270; Appendix X3.
 - 1. Select mortar as recommended by preconstruction testing to be softer than existing.
 - 2. Type N except as noted below.
 - 3. If required to match existing mortar use Type K: 1 part Portland cement, 4 parts hydrated lime and 11-1/4 to 15 parts fine sand.

2.5 ACCESSORIES

A. Cleaning Agent: Soapless, non-acidic, detergent, specially prepared for cleaning brick and masonry.

PART 3 - EXECUTION

3.1 PREPARATION

A. Examine and verify substrate suitability for product installation.

B. Protect existing construction and completed work from damage. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04 01 00 - 3

01-01-21

- 1. Protect from mortar droppings and cleaning operations.
- C. Remove existing fixtures and fittings concealing masonry joints to permit repointing and repair.

3.2 EXISTING MORTAR JOINTS

- A. Cut out existing bed and head mortar joints, to uniform depth of 19 mm (3/4 inches), or to sound mortar without damaging edges and faces of existing masonry units to remain.
- B. Remove dust and debris from joints.
 - 1. Do not rinse when temperature is below freezing.

3.3 TUCK POINTING

- A. Dampen joints immediately before tuck pointing. Allow masonry units to absorb surface water.
- B. Tightly pack tuck pointing mortar into joints in thin layers, 6 mm (1/4 inch) thick, maximum.
- C. Allow layer to become slightly hardened before applying next layer.
- D. Pack final layer flush with surfaces of masonry units.

3.4 MASONRY UNIT REPLACEMENT

- A. Cut out mortar joints surrounding masonry units requiring replacement.
 - Remove existing masonry units creating opening for replacement masonry unit installation.
 - 2. Remove mortar, dust, and debris from opening perimeter surfaces.
 - 3. Prevent debris from falling into cavity.
- B. Dampen surfaces of surrounding existing masonry before installing replacement masonry units.
 - Allow existing masonry to absorb surface moisture before installing replacement units.
 - Butter contact surfaces of existing masonry and replacement masonry units with mortar.
 - 3. Center replacement masonry units in opening and press into position.
 - 4. Remove excess mortar.
 - 5. Tuck point replacement masonry units to ensure full head and bed joints.

3.5 JOINT TOOLING

A. Tool repointed and replaced masonry joints when mortar becomes slightly hardened.

B. Produce smooth, compacted joint matching existing. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04 01 00 - 4

01-01-21

3.6 CLEANING

- A. Remove mortar splatter from exposed surfaces immediately.
- B. Clean exposed masonry surfaces on completion.
- C. Remove mortar droppings and other foreign substances from wall surfaces.
- D. Wet surfaces with clean water.
- E. Wash with cleaning agent.
- F. Brush masonry surfaces with stiff fiber brushes while washing.
- G. Immediately after washing, rinse with clean water.
 - 1. Remove traces of detergent, foreign streaks or stains.

- - E N D - -

DIVISION 05

08-01-18

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.
- B. Items specified.
 - 1. Support for Wall and Ceiling Mounted Items: (SD055000-01, SD055000-02, SD102113-01, SD102600-01, SD123100-01 & SD123100-02)
 - 2. Loose Lintels
 - 3. Shelf Angles

1.2 RELATED WORK

A. Prime and finish painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.
 - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
 - 3. Provide templates and rough-in measurements as required.
- C. Manufacturer's Certificates:
 - 1. Anodized finish as specified.
 - 2. Live load designs as specified.
- D. Design Calculations for specified live loads including dead loads.
- E. Furnish setting drawings and instructions for installation of anchors to be preset into concrete and masonry work, and for the positioning of items having anchors to be built into concrete or masonry construction.

1.4 QUALITY ASSURANCE

- A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B18.6.1-97.....Wood Screws B18.2.2-87(R2010).....Square and Hex Nuts
- C. American Society for Testing and Materials (ASTM): A36/A36M-14.....Structural Steel A47-99(R2014).....Malleable Iron Castings A48-03(R2012)....Gray Iron Castings A53-12.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123-15.....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A240/A240M-15.....Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications. A269-15.....Seamless and Welded Austenitic Stainless Steel Tubing for General Service A307-14.....Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A391/A391M-07(R2015)....Grade 80 Alloy Steel Chain A786/A786M-15.....Rolled Steel Floor Plate

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

08-01-18

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems Bancroft Architects + Engineers 08-01-18 B221-14.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B456-11.....Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium B632-08.....Aluminum-Alloy Rolled Tread Plate C1107-13.....Packaged Dry, Hydraulic-Cement Grout (Nonshrink) D3656-13.....Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns F436-16.....Hardened Steel Washers F468-06(R2015).....Nonferrous Bolts, Hex Cap Screws, Socket Head Cap Screws and Studs for General Use F593-13.....Stainless Steel Bolts, Hex Cap Screws, and Studs F1667-15.....Driven Fasteners: Nails, Spikes and Staples D. American Welding Society (AWS): D1.1-15.....Structural Welding Code Steel D1.2-14.....Structural Welding Code Aluminum D1.3-18.....Structural Welding Code Sheet Steel E. National Association of Architectural Metal Manufacturers (NAAMM) AMP 521-01(R2012).....Pipe Railing Manual AMP 500-06.....Metal Finishes Manual MBG 531-09(R2017).....Metal Bar Grating Manual MBG 532-09.....Heavy Duty Metal Bar Grating Manual F. Structural Steel Painting Council (SSPC)/Society of Protective Coatings: SP 1-15.....No. 1, Solvent Cleaning SP 2-04.....No. 2, Hand Tool Cleaning SP 3-04.....No. 3, Power Tool Cleaning G. Federal Specifications (Fed. Spec): RR-T-650E.....Treads, Metallic and Nonmetallic, Nonskid PART 2 - PRODUCTS 2.1 DESIGN CRITERIA (NOT USED) 2.2 MATERIALS A. Structural Steel: ASTM A36. B. Stainless Steel: ASTM A240, Type 302 or 304. Contract No. 36C26319D0022 Station Project No. 656-19-039

05 50 00- 3

Bancroft-AE Project No. 18-116

08-01-18

- C. Aluminum, Extruded: ASTM B221, Alloy 6063-T5 unless otherwise specified. For structural shapes use alloy 6061-T6 and alloy 6061-T4511.
- D. Primer Paint: As specified in Section 09 91 00, PAINTING.
- E. Modular Channel Units:
 - Factory fabricated, channel shaped, cold formed sheet steel shapes, complete with fittings bolts and nuts required for assembly.
 - 2. Form channel within turned pyramid shaped clamping ridges on each side.
 - 3. Provide case hardened steel nuts with serrated grooves in the top edges designed to be inserted in the channel at any point and be given a quarter turn so as to engage the channel clamping ridges. Provide each nut with a spring designed to hold the nut in place.
 - 4. Factory finish channels and parts with oven baked primer when exposed to view. Channels fabricated of ASTM A525, G90 galvanized steel may have primer omitted in concealed locations. Finish screws and nuts with zinc coating.
 - Fabricate snap-in closure plates to fit and close exposed channel openings of not more than 0.3 mm (0.0125 inch) thick stainless steel.
- F. Grout: ASTM C1107, pourable type.

2.3 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.
 - Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.
- B. Fasteners:
 - 1. Bolts with Nuts:
 - a. ASME B18.2.2.
 - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
 - c. ASTM F468 for nonferrous bolts.
 - d. ASTM F593 for stainless steel.
 - 2. Screws: ASME B18.6.1.

08-01-18

- 3. Washers: ASTM F436, type to suit material and anchorage.
- 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work.

2.4 FABRICATION GENERAL

- A. Material
 - Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified.
 - Use material free of defects which could affect the appearance or service ability of the finished product.
- B. Size:
 - 1. Size and thickness of members as shown.
 - When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.
- C. Connections
 - Except as otherwise specified, connections may be made by welding, riveting or bolting.
 - 2. Field riveting will not be approved.
 - 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.
 - 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed.
 - 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
 - Use Rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
 - 7. Use stainless steel connectors for removable members machine screws or bolts.
- D. Fasteners and Anchors
 - Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
 - 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

05 50 00- 5

08-01-18

of the members or causing failure of the anchor or fastener, and suit the sequence of installation.

- Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
- 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid.
- Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self-drilling and tapping screws or bolts.
- E. Workmanship
 - 1. General:
 - a. Fabricate items to design shown.
 - b. Furnish members in longest lengths commercially available within the limits shown and specified.
 - c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.
 - d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
 - e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades.
 - f. Prepare members for the installation and fitting of hardware.
 - g. Cut openings in gratings and floor plates for the passage of ducts, sumps, pipes, conduits and similar items. Provide reinforcement to support cut edges.
 - h. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.
 - 2. Welding:
 - a. Weld in accordance with AWS.
 - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.
 - c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

05 50 00- 6

08-01-18

protruding welds finished smooth and flush with adjacent surfaces.

d. Finish welded joints to match finish of adjacent surface.

- 3. Joining:
 - a. Miter or butt members at corners.
 - b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.
- 4. Anchors:
 - a. Where metal fabrications are shown to be preset in concrete, weld 32 x 3 mm (1-1/4 by 1/8 inch) steel strap anchors, 150 mm (6 inches) long with 25 mm (one inch) hooked end, to back of member at 600 mm (2 feet) on center, unless otherwise shown.
 - b. Where metal fabrications are shown to be built into masonry use $32 \times 3 \text{ mm}$ (1-1/4 by 1/8 inch) steel strap anchors, 250 mm (10 inches) long with 50 mm (2 inch) hooked end, welded to back of member at 600 mm (2 feet) on center, unless otherwise shown.
- 5. Cutting and Fitting:
 - Accurately cut, machine and fit joints, corners, copes, and miters.
 - b. Fit removable members to be easily removed.
 - c. Design and construct field connections in the most practical place for appearance and ease of installation.
 - d. Fit pieces together as required.
 - e. Fabricate connections for ease of assembly and disassembly without use of special tools.
 - f. Joints firm when assembled.
 - g. Conceal joining, fitting and welding on exposed work as far as practical.
 - h. Do not show rivets and screws prominently on the exposed face.
 - i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.
- F. Finish:
 - 1. Finish exposed surfaces in accordance with NAAMM AMP 500 Metal Finishes Manual.

08-01-18

- 2. Aluminum: NAAMM AMP 501.
 - a. Mill finish, AA-M10, as fabricated, use unless specified otherwise.
 - b. Clear anodic coating, AA-C22A41, chemically etched medium matte, with Architectural Class 1, 0.7 mils or thicker.
 - c. Colored anodic coating, AA-C22A42, chemically etched medium matte with Architectural Class 1, 0.7 mils or thicker.
 - d. Painted: AA-C22R10.
- 3. Steel and Iron: NAAMM AMP 504.
 - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise.
 - b. Surfaces exposed in the finished work:
 - 1) Finish smooth rough surfaces and remove projections.
 - Fill holes, dents and similar voids and depressions with epoxy type patching compound.
 - c. Shop Prime Painting:
 - 1) Surfaces of Ferrous metal:
 - a) Items not specified to have other coatings.
 - b) Galvanized surfaces specified to have prime paint.
 - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
 - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.
 - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.
 - 2) Nonferrous metals: Comply with MAAMM-500 series.
- 4. Stainless Steel: NAAMM AMP-504 Finish No. 4.
- 5. Chromium Plating: ASTM B456, satin or bright as specified, Service Condition No. SC2.
- G. Protection:
 - Insulate aluminum surfaces that will come in contact with concrete, masonry, plaster, or metals other than stainless steel, zinc or white bronze by giving a coat of heavy-bodied alkali resisting bituminous paint or other approved paint in shop.

 Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items.

2.5 SUPPORTS

- A. General:
 - 1. Fabricate ASTM A36 structural steel shapes as shown.
 - Use clip angles or make provisions for welding hangers and braces to overhead construction.
 - 3. Field connections may be welded or bolted.
- B. For Ceiling Hung Toilet Stall:
 - 1. Use a continuous steel channel above pilasters with hangers centered over pilasters.
 - Make provision for installation of stud bolts in lower flange of channel.
 - 3. Provide a continuous steel angle at wall and channel braces spaced as shown.
 - 4. Use threaded rod hangers.
 - 5. Provide diagonal angle brace where the suspended ceiling over toilet stalls does not extend to side wall of room.
- C. For Wall Mounted Items:
 - 1. For items supported by metal stud partitions.
 - 2. Steel strip or hat channel minimum of 1.5 mm (0.0598 inch) thick.
 - 3. Steel strip minimum of 150 mm (6 inches) wide, length extending one stud space beyond end of item supported.
 - 4. Steel hat channels where shown. Flange cut and flatted for anchorage to stud.
 - Structural steel tube or channel for grab bar at water closets floor to structure above with clip angles or end plates formed for anchors.
 - Use steel angles for thru wall counters. Drill angle for fasteners at ends and not over 100 mm (4 inches) on center between ends.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 08-01-18

08-01-18

- 2.6 FRAMES (NOT USED)
- 2.7 GUARDS (NOT USED)
- 2.8 COVERS AND FRAMES FOR PITS AND TRENCHES (NOT USED)
- 2.9 GRATINGS (NOT USED)

2.10 LOOSE LINTELS

- A. Furnish lintels of sizes shown. Where size of lintels is not shown, provide the sizes specified.
- B. Fabricate lintels with not less than 150 mm (6 inch) bearing at each end for nonbearing masonry walls, and 200 mm (8 inch) bearing at each end for bearing walls.
- C. Provide one angle lintel for each 100 mm (4 inches) of masonry thickness as follows except as otherwise specified or shown.
 - 1. Openings 750 mm to 1800 mm (2-1/2 feet to 6 feet) 100 x 90 x 8 mm (4 x 3-1/2 x 5/16 inch).
 - 2. Openings 1800 mm to 3000 mm (6 feet to 10 feet) 150 x 90 x 9 mm (6
 x 3-1/2 x 3/8 inch).
- D. For 150 mm (6 inch) thick masonry openings 750 mm to 3000 mm (2-1/2 feet to 10 feet) use one angle 150 x 90 x 9 mm (6 x 3-1/2 x 3/8 inch).
- E. Provide bearing plates for lintels where shown.
- F. Weld or bolt upstanding legs of double angle lintels together with 19 mm (3/4 inch bolts) spaced at 300 mm (12 inches) on centers.
- G. Insert spreaders at bolt points to separate the angles for insertion of metal windows, louver, and other anchorage.
- H. Where shown or specified, punch upstanding legs of single lintels to suit size and spacing of anchor bolts.

2.11 SHELF ANGLES

- A. Fabricate from steel angles of size shown.
- B. Fabricate angles with horizontal slotted holes for 19 mm (3/4 inch) bolts spaced at not over 900 mm (3 feet) on centers and within 300 mm (12 inches) of ends.
- C. Provide adjustable malleable iron inserts for embedded in concrete framing.

08-01-18

- 2.12 PLATE DOOR SILL (NOT USED)
- 2.13 SAFETY NOSINGS (NOT USED)
- 2.14 LADDERS (NOT USED)
- 2.15 RAILINGS (NOT USED)
- 2.16 CATWALKS (NOT USED)
- 2.17 TRAP DOOR AND FRAMES WITH CEILING HATCH (NOT USED)
- 2.18 SIDEWALK DOOR (NOT USED)
- 2.19 SCREENED ACCESS DOORS AND FRAMES (NOT USED)
- 2.20 STEEL COUNTER OR BENCH TOP FRAME AND LEGS (NOT USED)
- 2.21 STEEL PIPE BOLLARD (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Items set into concrete or masonry.
 - Provide temporary bracing for such items until concrete or masonry is set.
 - 2. Place in accordance with setting drawings and instructions.
 - 3. Build strap anchors, into masonry as work progresses.
- C. Field weld in accordance with AWS.
 - 1. Design and finish as specified for shop welding.
 - 2. Use continuous weld unless specified otherwise.
- D. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use.
- E. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming.
- F. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion.
- G. Secure escutcheon plate with set screw.

3.2 INSTALLATION OF SUPPORTS

A. Anchorage to structure.

08-01-18

- 1. Secure angles or channels and clips to overhead structural steel by continuous welding unless bolting is shown.
- 2. Secure supports to concrete inserts by bolting or continuous welding as shown.
- Secure supports to mid height of concrete beams when inserts do not exist with expansion bolts and to slabs, with expansion bolts. unless shown otherwise.
- 4. Secure steel plate or hat channels to studs as detailed.
- B. Supports for Wall Mounted items:
 - 1. Locate center of support at anchorage point of supported item.
 - 2. Locate support at top and bottom of wall hung cabinets.
 - Locate support at top of floor cabinets and shelving installed against walls.
 - 4. Locate supports where required for items shown.
- 3.3 COVERS AND FRAMES FOR PITS AND TRENCHES (NOT USED)

3.4 FRAMES FOR LEAD LINED DOORS (NOT USED)

- 3.5 DOOR FRAMES (NOT USED)
- 3.6 OTHER FRAMES (NOT USED)
- 3.7 GUARDS (NOT USED)
- 3.8 GRATINGS (NOT USED)

3.9 STEEL LINTELS

- A. Use lintel sizes and combinations shown or specified.
- B. Install lintels with longest leg upstanding, except for openings in 150 mm (6 inch) masonry walls install lintels with longest leg horizontal.
- C. Install lintels to have not less than 150 mm (6 inch) bearing at each end for nonbearing walls, and 200 mm (8 inch) bearing at each end for bearing walls.

3.10 SHELF ANGLES

- A. Anchor shelf angles with 19 mm (3/4 inch) bolts unless shown otherwise in adjustable malleable iron inserts, set level at elevation shown.
- B. Provide expansion space at end of members.

08-01-18

- 3.11 PLATE DOOR SILL (NOT USED)
- 3.12 SAFETY NOSINGS (NOT USED)
- 3.13 LADDERS (NOT USED)
- 3.14 RAILINGS (NOT USED)
- 3.15 CATWALK AND PLATFORMS (NOT USED)
- 3.16 SIDEWALK DOOR, TRAP DOORS, AND FRAMES (NOT USED)
- 3.17 SCREENED ACCESS DOOR (NOT USED)
- 3.18 STEEL COMPONENTS FOR MILLWORK ITEMS (NOT USED)
- 3.19 INSTALLATION OF STEEL PIPE BOLLARD (NOT USED)

3.20 CLEAN AND ADJUSTING

- A. Adjust movable parts including hardware to operate as designed without binding or deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components.
- B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project.

- - - E N D - - -

DIVISION 07

01-01-21

SECTION 07 01 50.19 PREPARATION FOR RE-ROOFING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Partial roof removal for new roof system installation.
- B. Existing Roofing System: Asphalt shingles. System components include:
 - 1. Shingle system..
 - 2. Ice and water shield.
 - 3. Substrate board.

1.2 RELATED WORK

- A. Section 07 21 13, THERMAL INSULATION: Mineral wool insulation between rafters.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Sheet Metal Counterflashing.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Single-Ply Roofing Institute (ANSI/SPRI):

```
FX-1 (R2016).....Standard Field Test Procedure for Determining
```

the Withdrawal Resistance of Roofing Fasteners.

C. American Society for Nondestructive Testing (ASNT): SNT-TC-1A (2019).....Personnel Qualification and Certification for

Nondestructive Testing.

D. ASTM International (ASTM): C208-12(2017)e2.....Cellulosic Fiber Insulating Board. C578-19.....Rigid, Cellular Polystyrene Thermal Insulation. C728-17a.....Perlite Thermal Insulation Board. C1177/C1177M-17.....Glass Mat Gypsum Substrate for Use as Sheathing. C1153-10(2015).....Location of Wet Insulation in Roofing Systems Using Infrared Imaging. C1278/C1278M-17.....Standard Specification Fiber-Reinforced Gypsum Panel. D4263-83(2018).....Indicating Moisture in Concrete by the Plastic Sheet Method.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

 $07 \ 01 \ 50.19 \ - \ 1$

01-01-21

E. U.S. Department of Commerce National Institute of Standards and Technology (NIST): DOC PS 1-19.....Structural Plywood. DOC PS 2-18.....Performance Standard for Wood-Based

Structural-Use Panels.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting minimum 30 days before beginning Work
 - of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Contractor.
 - c. Installer.
 - d. Other installers responsible for adjacent and intersecting work, including mechanical and electrical equipment installers.
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Removal and installation schedule.
 - b. Removal and installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Removal and installation.
 - f. Temporary roofing including daily terminations.
 - g. Transitions and connections to other work.
 - h. Inspecting and testing.
 - i. Other items affecting successful completion.
 - 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Description of temporary roof system and components.
 - 3. List of patching materials.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

07 01 50.19 - 2

01-01-21

- 4. Recover board fastening requirements.
- 5. Temporary roofing installation instructions and removal instructions. Preparation instructions to receive new roofing. Existing roofing warrantor's instructions.
- D. Photographs: Document existing conditions potentially affected by roofing operations before work begins.
- E. Field Inspection Reports:
 - Certify warrantor inspected completed roofing and existing warranty remains in effect.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Same installer as Section 07 31 13, ASPHALT SHINGLES.
 - 2. Licensed to perform asbestos abatement in Project jurisdiction when removal of asbestos-containing material is required.
 - Approved by existing roofing system warrantor when work affects existing roofing system under warranty.

1.7 FIELD CONDITIONS

- A. Building Occupancy: Perform work to minimize disruption to normal building operations.
 - Verify occupants are evacuated from affected building areas when working on structurally impaired roof decking above occupied areas.
 - 2. Provide notice minimum 72 hours before beginning activities affecting normal building operations.
- B. Existing Roofing Available Information:
 - 1. The following are available for Contractor reference:
 - a. Construction drawings and project manual.
 - b. Existing asphalt shingle system product data.
 - c. Existing insulation system product data.
 - 2. Examine available information before beginning work of this section.
- C. Weather Limitations: Proceed with reroofing preparation only during dry weather conditions as specified for new roofing installation in Section Section 07 31 13, ASPHALT SHINGLES.
 - Remove only as much roofing in one day as can be made watertight in same day.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- D. Hazardous materials are not expected in existing roofing system.
 - 1. Known hazardous materials were removed before start of work.
 - Do not disturb suspected hazardous materials. When discovered, notify Contracting Officer's Representative.
 - 3. Hazardous materials discovered during execution of the work will be removed by Government as work of a separate contract.

1.8 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Existing Warranties: Perform work to maintain existing roofing warranty in effect.
 - 1. Notify warrantor before beginning, and upon completion of reroofing.
 - 2. Obtain warrantor's instructions for maintaining existing warranty.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Patching Materials: Match existing roofing system materials.
- B. Plywood Sheathing: See Section 06 10 00, ROUGH CARPENTRY.
- C. Metal Flashing: See Section 07 60 00, FLASHING AND SHEET METAL.
- D. Temporary Protection Materials:
 - 1. Plywood: NIST DOC PS 1-19, Grade CD Exposure 1-18.
- E. Temporary Roofing System Materials: Contractor's option.

PART 3 - EXECUTION

3.1 EXAMINATION (NOT USED)

3.2 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing roofing system indicated to remain.
 - 1. Cover with temporary protection materials without impeding drainage.
 - 2. Limit traffic and material storage to protected areas.
 - Maintain temporary protection until replacement roofing is completed.
- C. Protect existing construction and completed work from damage.
- D. Protect landscaping from damage.
- E. Ensure roof drainage remains functional.
 - 1. Keep drainage systems clear of debris.
 - 2. Prevent water from entering building and existing roofing system.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

07 01 50.19 - 4

01-01-21

F. Coordinate rooftop utilities remaining active during roofing work with Contacting Officer's Representative.

3.3 RE-ROOFING PREPARATION - GENERAL

- A. Notify Contacting Officer's Representative of planned operations, daily.
 - 1. Identify location and extent of roofing removal.
 - 2. Request authorization to proceed.

3.4 OVERBURDEN REMOVAL (NOT USED)

3.5 COMPLETE ROOFING SYSTEM REMOVAL (NOT USED)

3.6 PARTIAL ROOFING SYSTEM REMOVAL

- A. Remove existing roofing, exposing structural roof system at locations and to extent indicated on drawings.
 - 1. Remove roof insulation, ice and water shield, and substrate board.
 - 2. Remove or cut-off roofing system fasteners.

3.7 ROOFING MEMBRANE AND SELECTIVE ROOFING SYSTEM COMPONENT REMOVAL (NOT USED)

3.8 DECK PREPARATION (NOT USED)

3.9 TEMPORARY ROOFING

- A. Install temporary roofing to maintain building watertight.
- B. Remove temporary roofing before installing new roofing.
- 3.10 EXISTING MEMBRANE PREPARATION FOR NEW ROOFING (NOT USED)

3.11 BASE FLASHING REMOVAL (NOT USED)

3.12 RECOVER BOARD INSTALLATION (NOT USED)

3.13 FIELD QUALITY CONTROL

- A. Existing Roofing System Warrantor Services:
 - Inspect reroofing preparation and roofing installation to verify compliance with existing warranty conditions.
 - 2. Submit reports of field inspections, and supplemental instructions issued during inspections.

3.14 DISPOSAL

- A. Collect waste materials in containers.
- B. Remove waste materials from project site, regularly, to prevent accumulation.
- C. Legally dispose of waste materials.

- - E N D - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

07 01 50.19 - 5

01-01-21

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Thermal insulation.
 - a. Batt or blanket insulation at exterior furred walls and roof rafters.
 - 2. Acoustical insulation.
 - a. Batt and blanket insulation at interior framed partitions.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Adhesives VOC Limits.
- B. Section 07 84 00, FIRESTOPPING: Safing Insulation.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):

C516-19.....Vermiculite Loose Fill Thermal Insulation. C549-18.....Perlite Loose Fill Insulation. C552-17e1Cellular Glass Thermal Insulation. C553-13(2019)Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications. C578-19.....Rigid, Cellular Polystyrene Thermal Insulation. C591-20.....Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation. C612-14(2019).....Mineral Fiber Block and Board Thermal Insulation. C665-17......Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing. C728-17a.....Perlite Thermal Insulation Board. C954-18.....Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Base to Steel Studs From 0.033 (0.84 mm) inch to 0.112 inch (2.84 mm) in thickness. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 07 21 13 - 1

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems

Bancroft Architects + Engineers

01-01-21

C1002-18.....Steel Self-Piercing Tapping Screws for Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs.

D312/D312M-16a.....Asphalt Used in Roofing.

E84-20.....Surface Burning Characteristics of Building Materials.

F1667-18a.....Driven Fasteners: Nails, Spikes, and Staples.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show insulation type, thickness, and R-value for each location.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Adhesive indicating manufacturer recommendation for each application.
- D. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Low Pollutant-Emitting Materials: Show volatile organic compound types and quantities.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.
- C. Protect foam plastic insulation from UV exposure.

1.7 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

01-01-21

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL

- A. Insulation Thickness:
 - 1. Provide thickness required by R-value shown on drawings.
- B. Insulation Types:
 - 1. Provide one insulation type for each application.
- C. Sustainable Construction Requirements:
 - 1. Insulation Recycled Content:
 - a. Rock wool material: 75 percent recovered material.
 - 2. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Non-Flooring Adhesives and Sealants.

2.2 THERMAL INSULATION

- A. Exterior Framing or Furring Insulation:
 - 1. Mineral Fiber: ASTM C665, Type II, Class C, Category I where concealed by thermal barrier.
 - 2. Mineral Fiber: ASTM C665, Type III, Class A at other locations.
- B. Inside Face of Exterior Wall Insulation:
 - 1. Mineral Fiber Board: ASTM C612, Type IB or II.

2.3 ACOUSTICAL INSULATION

- A. Semi Rigid, Batts and Blankets:
 - 1. Widths and lengths to fit tight against framing.
 - 2. Mineral Fiber Batt or Blankets: ASTM C665 FSK faced.
 - 3. Maximum Surface Burning Characteristics: ASTM E84.
 - a. Flame Spread Rating: 25.
 - b. Smoke Developed Rating: 450.

2.4 ACCESSORIES

- A. Fasteners:
 - 1. Staples or Nails: ASTM F1667, zinc-coated, size and type to suit application.
 - 2. Screws: ASTM C954 or ASTM C1002, size and length to suit application with washer minimum 50 mm (2 inches) diameter.
 - Impaling Pins: Steel pins with head minimum 50 mm (2 inches) diameter.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- a. Length: As required to extend beyond insulation and retain cap washer when washer is placed on pin.
- b. Adhesive: Type recommended by manufacturer to suit application.
- B. Insulation Adhesive: Nonflammable type recommended by insulation manufacturer to suit application.
- C. Tape: Pressure sensitive adhesive on one face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install insulation with vapor barrier facing the heated side, unless indicated otherwise.
- C. Install batt and blanket insulation with joints tight. Fill framing voids completely. Seal penetrations, terminations, facing joints, facing cuts, tears, and unlapped joints with tape.
- D. Fit insulation tight against adjoining construction and penetrations, unless indicated otherwise.

3.3 THERMAL INSULATION

- A. Exterior Framing or Furring Insulation:
 - 1. General:
 - a. Open voids are not acceptable.
 - b. Pack insulation around door frames and windows, in building expansion joints, door soffits, and other voids.
 - c. Pack behind outlets, around pipes, ducts, and services encased in walls.
 - d. Hold insulation in place with pressure sensitive tape.
 - e. Lap facing flanges together over framing for continuous surface. Seal penetrations through insulation and facings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

07 21 13 - 4

- 2. Metal Studs: Fasten insulation between metal studs, framing, and furring with pressure sensitive tape continuous along flanged edges.
- 3. Roof Rafters and Floor Joists: Friction fit insulation between framing to provide minimum 50 mm (2 inch) air space between insulation and roof sheathing.
- B. Inside Face of Exterior Wall Insulation:
 - Location: On interior face of solid masonry and concrete walls, beams, beam soffits, underside of floors, and to face of studs to support interior wall finish where indicated.
 - Bond insulation to solid vertical surfaces with adhesive. Fill joints with adhesive cement.
 - Fasten board insulation to face of studs with screws, nails or staples. Space fastenings maximum 300 mm (12 inches) on center. Stagger fasteners at board joints. Install fasteners at each corner.

3.4 ACOUSTICAL INSULATION

- A. General:
 - 1. Install insulation without voids.
 - 2. Pack insulation around door frames and windows, in building expansion joints, door soffits, and other voids.
 - Pack behind outlets, around pipes, ducts, and services encased in walls.
 - 4. Hold insulation in place with pressure sensitive tape.
 - 5. Lap facer flanges together over framing for continuous surface. Seal all penetrations through the insulation and facers.
 - 6. Do not compress insulation below required thickness except where embedded items prevent required thickness.
- B. Semi Rigid, Batts and Blankets:
 - When insulation is not full thickness of cavity, adhere insulation to one side of cavity, maintaining continuity of insulation and covering penetrations or embedments.
 - a. Metal Framing:
 - Fasten insulation between metal framing with pressure sensitive tape continuous along flanged edges.
 - At metal framing or ceilings suspension systems, install blanket insulation above suspended ceilings or metal framing at right angles to the main runners or framing.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

07 21 13 - 5

01-01-21

3) Tape insulation tightly together so no gaps occur and metal

framing members are covered by insulation.

3.5 CLEANING

A. Remove excess adhesive before adhesive sets.

3.6 PROTECTION

- A. Protect insulation from construction operations.
- B. Repair damage.

- - E N D - -

01-01-21

SECTION 07 31 13 ASPHALT SHINGLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Fiberglass asphalt shingles over underlayment nailed to roof sheathing.

1.2 RELATED WORK

A. Section 07 60 00, FLASHING AND SHEET METAL: Counterflashing and Flashing of Roof Projections.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM): D226/D226M-17.....Asphalt-Saturated Organic Felt Used in Roofing and Waterproofing. D1970/D1970M-19.....Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection. D3018/D3018M-11(2017)...Class A Asphalt Shingles Surfaced with Mineral Granules. D3161/D3161M-20.....Wind Resistance of Steep Slope Roofing Products (Fan-Induced Method). D3462/D3462M-19.....Asphalt Shingles Made from Glass Felt and Surfaced with Mineral Granules. F1667-18a.....Driven Fasteners: Nails, Spikes, and Staples. C. UL LLC (UL): 790 (Edition 8)Fire Tests of Roof Coverings. 1.4 SUBMITTALS A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
 - B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
 - 3. Warranty.
 - C. Samples: Shingles: Full size each type, color and texture.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

07 31 13 - 1

06/02/2023

01-01-21

- D. Sustainable Construction Submittals:
 - 1. Solar Reflectance Index (SRI) for asphalt shingles.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, manufacture date, and the label of Underwriters Laboratories.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store shingles according to manufacturer's instructions. Store roll goods on end in upright position.
- B. Protect products from damage during handling and construction operations.
- C. Keep materials dry, covered completely and protected from weather.

1.7 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant asphalt shingles against material and manufacturing defects.
 - 1. Material Warranty Period: 30 years.
 - Wind-Speed Warranty Period: Resist wind speeds up to (100 mph) for 15 years.
 - 3. Algae-Resistance Warranty Period: No discoloration for 20 years.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Basis of Design: Match existing shingles.
- B. Provide each product from one manufacturer.
 - 1. Provide each product exposed to view from one production run.
- C. Sustainable Construction Requirements:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

1. Solar Reflectance Index: 29, minimum.

2.2 ASPHALT SHINGLES

- A. Asphalt Shingles: Fiberglass reinforced, laminated type, square butt.
 - 1. ASTM D3462/D3462M and ASTM D3018/D3018M, Type I, self-sealing.
 - 2. ASTM D3161/D3161M, Class F wind-resistant.
 - 3. UL 790 Class A fire resistance.
 - 4. Minimum Weight: 10.3 kg/square meter (210 lbs./100 square feet).

2.3 ROOFING NAILS

- A. ASTM F1667, Type I, Style 20, galvanized steel, deformed shanks, heads 10 mm to 11 mm (3/8 inch to 7/16 inch) diameter.
 - 1. Nails for Shingles: 32 mm (1-1/4 inches) long.
 - 2. Nails for Felt: 19 mm (3/4 inch) long.

2.4 ROOFING UNDERLAYMENT

- A. Organic Felt: ASTM D226/D226M, Type 1.
- B. Self-Adhering Modified Bituminous Underlayment: ASTMD1970/D1970M.

2.5 METAL FLASHING

A. Provide metal roof flashings, including apron flashings, step flashings, valley flashings, and vent pipe flashings specified in Section 07 60 00, FLASHING AND SHEET METAL.

2.6 RIDGE VENTS (NOT USED)

2.7 SNOW GUARDS (NOT USED)

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for roofing installation.
 - Verify roof substrates are sound, within manufacturer's tolerances, and free from defects which would interfere with roofing installation.
 - Verify roof accessories, vent pipes and other projections through roof are in place and roof flashing is installed, or ready for installation, before installing shingles.
- B. Protect existing construction and completed work from damage.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved
- submittal drawings. 1. When manufacturer's instructions deviate from specifications, submit
 - proposed resolution for Contracting Officer's Representative consideration.

3.3 METAL DRIP EDGE INSTALLATION NOT USED)

3.4 FLASHING INSTALLATION

- A. Install metal flashings specified in Section 07 60 00, FLASHING AND SHEET METAL at intersections of roofs, adjoining walls, or projections through deck such as chimneys and vent stacks.
- B. Install metal valley flashing shown and as specified under Section 07 60 00, FLASHING AND SHEET METAL.
 - Secure valley flashing according to shingle manufacturer's instructions.
 - Expose flashing in open portion of valley 125 mm (5 inches) minimum, and lap shingles over flashing 125 mm (5 inches) minimum.

3.5 UNDERLAYMENT INSTALLATION

- A. Install self-adhering sheet underlayment, working from low point to high point. Lap sides 90 mm (3-1/2 inches) minimum, and lap ends 150 mm (6 inches) minimum. Install at the following locations:
 - Eaves and Rakes: From edge of eave and rake to 600 mm (24 inches) minimum beyond inside face of exterior wall.

a. Lap underlayment over eave metal drip edge.

- 2. Valleys, Hips and Roof Slope Transitions: Centered over change in slope, and extended 450 mm (18 inches) minimum on both sides.
- Ridges: Centered on ridge, and extended 900 mm (36 inches) minimum on both sides. Do not cover ridge vent opening.
- 4. Sidewalls and Projections through Roof: Extended 450 mm (18 inches) from projection, and extended up projection 100 mm (4 inches) minimum.
- 5. Firmly roll underlayment to ensure adhesion to roof deck and metal flashings.
- B. Install organic felt underlayment on roof deck not covered by self-adhering sheet underlayment, with 100 mm (4 inches) minimum end

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

laps, 50 mm (2 inches) minimum head laps, and 300 mm (12 inches) minimum ridge laps. Nail felt 125 mm (5 inches) on centers along laps.

3.6 ROOF ACCESSORY INSTALLATION (NOT USED)

3.7 ASPHALT SHINGLE INSTALLATION

- A. Install shingles aligned parallel to roof eave, nailed to roof sheathing.
 - 1. Exposure: 125 mm (5 inches) maximum.
 - 2. Head lap: 50 mm (2 inches) minimum.
- B. Install asphalt-shingle starter strip with tabs removed and overhanging lower edge of roof 13 mm (1/2 inch).
- C. Valleys: Closed.

3.8 RIDGE VENT INSTALLATION

- A. Install ridge vents over shingles.
 - Extent: Continuous along ridges extending to within <distance> of rakes.

3.9 RIDGE SHINGLE INSTALLATION

- A. Bend each shingle lengthwise down center to provide equal exposure on both sides of ridge.
 - Begin ridge installation at leeward end of ridge. Cover ridge vents with shingles. Do not cover ridge vent openings with ridge shingles.
 - 2. Begin hip installation at eave.
- B. Install shingles with maximum 125 mm (5 inches) exposure.
- C. Secure each shingle with one nail on both sides of ridge, 215 mm (8-1/2 inches) back from exposed end and one inch up from edge.

3.10 SNOW GUARD INSTALLATION (NOT USED)

- - E N D - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

A. Formed sheet metal work for roof flashing is specified in this section.

1.2 RELATED WORK

- A. Section 07 31 13, ASPHALT SHINGLES.
- B. Section 07 92 00, JOINT SEALANTS: Joint Sealants.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. Aluminum Association (AA):
 - AA-C22A41.....Aluminum Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick
 - AA-C22A42.....Chemically etched medium matte, with integrally colored anodic coating, Class I Architectural, 0.7 mils thick
 - AA-C22A44.....Chemically etched medium matte with electrolytically deposited metallic compound,

integrally colored coating Class I

Architectural, 0.7-mil thick finish

C. American National Standards Institute/Single-Ply Roofing Institute/Factory Mutual (ANSI/SPRI/FM): 4435/ES-1-11.....Wind Design Standard for Edge Systems Used with

Low Slope Roofing Systems

D. American Architectural Manufacturers Association (AAMA): AAMA 620-02.....Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural

Aluminum

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

07 60 00 - 1

Bancroft Architects + Engineers 01-01-21 AAMA 621-02.....Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural Hot Dipped Galvanized (HDG) and Zinc-Aluminum Coated Steel Substrates E. ASTM International (ASTM): A240/A240M-20.....Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications. A653/A653M-20.....Steel Sheet Zinc-Coated (Galvanized) or Zinc Alloy Coated (Galvanized) by the Hot- Dip Process B32-08(2014).....Solder Metal B209-14.....Aluminum and Aluminum-Alloy Sheet and Plate B370-12(2019).....Copper Sheet and Strip for Building Construction D173/D173M-03(2018).....Bitumen-Saturated Cotton Fabrics Used in Roofing and Waterproofing D412-16.....Vulcanized Rubber and Thermoplastic Elastomers-Tension D1187/D1187M-97(2018)...Asphalt Base Emulsions for Use as Protective Coatings for Metal D1784-20.....Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds D3656/D3656M-13.....Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns D4586/D4586M-07(2018)...Asphalt Roof Cement, Asbestos Free F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Architectural Sheet Metal Manual. G. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual H. Federal Specification (Fed. Spec): A-A-1925A..... Shield, Expansion; (Nail Anchors) UU-B-790A.....Building Paper, Vegetable Fiber Contract No. 36C26319D0022

Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

07 60 00 - 2

Bancroft Architects + Engineers

I. International Code Commission (ICC): International Building Code, Current Edition

1.4 PERFORMANCE REQUIREMENTS

- A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:
 1. Wind Zone 1: 0.48 to 0.96 kPa (10 to 20 pound force/square foot):
 1.92-kPa (40 pound force/square foot) perimeter uplift force, 2.87kPa (60 pound force/square foot pound force/square foot) corner uplift force, and 0.96-kPa (20- pound force/square foot) outward force.
- B. Wind Design Standard: Fabricate and install flashings tested per ANSI/SPRI/FM ES-1 to resist design pressure.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For all specified items, including:
 - 1. Fascia-cant
- C. Manufacturer's Literature and Data: For all specified items, including:
 1. Fascia-cant
- D. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

- A. Stainless Steel: ASTM A240, Type 302B, dead soft temper.
- B. Galvanized Sheet: ASTM, A653.
- C. Nonreinforced, Elastomeric Sheeting: Elastomeric substances reduced to thermoplastic state and extruded into continuous homogenous sheet (0.056 inch) thick. Sheeting shall have not less than 7 MPa (1,000 psi) tensile strength and not more than seven percent tension-set at 50 percent elongation when tested in accordance with ASTM D412. Sheeting shall show no cracking or flaking when bent through 180 degrees over a 1 mm (1/32 inch) diameter mandrel and then bent at same point over same

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

size mandrel in opposite direction through 360 degrees at temperature of -30 °C (-20 °F).

2.2 FLASHING ACCESSORIES

- A. Solder: ASTM B32; flux type and alloy composition as required for use with metals to be soldered.
- B. Rosin Paper: Fed-Spec. UU-B-790, Type I, Grade D, Style 1b, Rosin-sized sheathing paper, weighing approximately 3 Kg/10 m² (6 pounds/100 square feet).
- C. Bituminous Paint: ASTM D1187, Type I.
- D. Fasteners:
 - Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.
 - 2. Nails:
 - a. Minimum diameter for copper nails: 3 mm (0.109 inch).
 - b. Minimum diameter for aluminum nails 3 mm (0.105 inch).
 - c. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
 - d. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
 - 3. Rivets: Not less than 3 mm (1/8 inch) diameter.
 - 4. Expansion Shields: Fed Spec A-A-1925A.
- E. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- F. Insect Screening: ASTM D3656, 18 by 18 regular mesh.
- G. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Concealed Locations (Built into Construction):
 - 1. Galvanized steel: 0.5 mm (0.021 inch) thick.
- C. Exposed Locations:
 - 1. Stainless steel: 0.4 mm (0.015 inch).
- D. Thickness of aluminum or galvanized steel is specified with each item.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

2.4 FABRICATION, GENERAL

- A. Jointing:
 - In general, stainless steel joints, except expansion and contraction joints, shall be locked and soldered.
 - Jointing of copper over 0.5 Kg (20 oz) weight or stainless steel over 0.45 mm (0.018 inch) thick shall be done by lapping, riveting and soldering.
 - 3. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 - c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
 - 4. Flat and lap joints shall be made in direction of flow.
 - 5. Edges of bituminous coated copper, copper covered paper, nonreinforced elastomeric sheeting and polyethylene coated copper shall be jointed by lapping not less than 100 mm (4 inches) in the direction of flow and cementing with asphalt roof cement or sealant as required by the manufacturer's printed instructions.
 - 6. Soldering:
 - a. Pre tin both mating surfaces with solder for a width not less than 38 mm (1 1/2 inches) of uncoated copper, stainless steel, and copper clad stainless steel.
 - b. Wire brush to produce a bright surface before soldering lead coated copper.
 - c. Treat in accordance with metal producers recommendations other sheet metal required to be soldered.
 - d. Completely remove acid and flux after soldering is completed.
- B. Edge Strips or Continuous Cleats:
 - 1. Fabricate continuous edge strips where shown and specified to secure loose edges of the sheet metal work.
 - Except as otherwise specified, fabricate edge strips or minimum 0.6 mm (0.024 inch) thick stainless steel.
 - 3. Use material compatible with sheet metal to be secured by the edge strip.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- Fabricate in 3000 mm (10 feet) maximum lengths with not less than 19 mm (3/4 inch) loose lock into metal secured by edge strip.
- 5. Fabricate Strips for fascia anchorage to extend below the supporting wood construction to form a drip and to allow the flashing to be hooked over the lower edge at least 19 mm (3/4-inch).
- Fabricate anchor edge maximum width of 75 mm (3 inches) or of sufficient width to provide adequate bearing area to insure a rigid installation using 0.8 mm (0.031 inch) thick stainless steel.
- C. Drips:
 - Form drips at lower edge of sheet metal counter-flashings (cap flashings), fascias, by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.
 - 2. Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.
- D. Edges:
 - Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6 mm (1/4 inch) to form dam, unless otherwise specified or shown otherwise.
 - 2. Finish exposed edges of flashing with a 6 mm (1/4 inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6 mm (1/4 inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.
 - 3. All metal roof edges shall meet requirements of IBC, current edition.
- E. Metal Options:
 - Where options are permitted for different metals use only one metal throughout.
 - Stainless steel may be used in concealed locations for fasteners of other metals exposed to view.

2.5 FINISHES

A. Use same finish as on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 01-01-21

07 60 00 - 6

Bancroft Architects + Engineers

01-01-21

1) coating.

2.6 THROUGH-WALL FLASHINGS

- A. Form through-wall flashing to provide a mechanical bond or key against lateral movement in all directions. Install a sheet having 2 mm (1/16 inch) deep transverse channels spaced four to every 25 mm (one inch), or ribbed diagonal pattern, or having other deformation unless specified otherwise.
 - Fabricate in not less than 2400 mm (8 feet) lengths; 3000 mm (10 feet) maximum lengths.
 - 2. Fabricate so keying nests at overlaps.
- B. For Masonry Work When Concealed Except for Drip:
 - 1. Either copper, stainless steel, or copper clad stainless steel.
 - 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 - Form exposed portions of flashing with drip, approximately 6 mm (1/4 inch) projection beyond wall face.
- C. For Masonry Work When Exposed Edge Forms a Receiver for Counter Flashing:
 - 1. Use same metal and thickness as counter flashing.
 - 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 - 3. Form exposed portion as snap lock receiver for counter flashing upper edge.
- D. Lintel Flashing:
 - Use either copper, stainless steel, copper clad stainless-steel plane flat sheet, or nonreinforced elastomeric sheeting, bituminous coated copper, copper covered paper, or polyethylene coated copper.
 - Fabricate flashing at ends with folded corners to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening.
 - 3. Turn up back edge as shown.
 - 4. Form exposed portion with drip as specified or receiver.

2.7 BASE FLASHING (NOT USED)

2.8 COUNTERFLASHING (CAP FLASHING OR HOODS)

A. stainless steel, unless specified otherwise.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- B. Fabricate to lap base flashing a minimum of 100 mm (4 inches) with drip:
 - 1. Form lock seams for outside corners. Allow for lap joints at ends and inside corners.
 - 2. In general, form flashing in lengths not less than 2400 mm (8 feet) and not more than 3000 mm (10 feet).
 - 3. Two-piece, lock in type flashing may be used in-lieu-of one piece counter-flashing.
 - 4. Manufactured assemblies may be used.
 - 5. Where counterflashing is installed at new work use an integral flange at the top designed to be extended into the masonry joint or reglet in concrete.
 - 6. Where counterflashing is installed at existing work use surface applied type, formed to provide a space for the application of sealant at the top edge.
- C. One-piece Counterflashing:
 - 1. Back edge turned up and fabricate to lock into reglet in concrete.
 - 2. Upper edge formed to extend full depth of masonry unit in mortar joint with back edge turned up 6 mm (1/4 inch).
- D. Two-Piece Counterflashing:
 - 1. Receiver to extend into masonry wall depth of masonry unit with back edge turned up 6 mm (1/4 inch) and exposed edge designed to receive and lock counterflashing upper edge when inserted.
 - 2. Counterflashing upper edge designed to snap lock into receiver.
- E. Surface Mounted Counterflashing; one or two piece:
 - 1. Use at existing or new surfaces where flashing cannot be inserted in vertical surface.
 - 2. One piece fabricate upper edge folded double for 65 mm (2 1/2inches) with top 19 mm (3/4 inch) bent out to form "V" joint sealant pocket with vertical surface. Perforate flat double area against vertical surface with horizontally slotted fastener holes at 400 mm (16 inch) centers between end holes. Option: One piece surface mounted counter-flashing (cap flashing) may be used. Fabricate as detailed on Plate 51 of SMACNA Architectural Sheet Metal Manual.
 - 3. Two pieces: Fabricate upper edge to lock into surface mounted

receiver. Fabricate receiver joint sealant pocket on upper edge and Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

07 60 00 - 8

06/02/2023

Bancroft Architects + Engineers

lower edge to receive counterflashing, with slotted fastener holes at 400 mm (16 inch) centers between upper and lower edge.

- F. Pipe Counterflashing:
 - Form flashing for water-tight umbrella with upper portion against pipe to receive a draw band and upper edge to form a "V" joint sealant receiver approximately 19 mm (3/4 inch) deep.
 - 2. Fabricate 100 mm (4 inch) over lap at end.
 - Fabricate draw band of same metal as counter flashing. Use 0.6 Kg (24 oz) copper or 0.33 mm (0.013 inch) thick stainless steel or copper coated stainless steel.
 - 4. Use stainless steel bolt on draw band tightening assembly.
 - 5. Vent pipe counter flashing may be fabricated to omit draw band and turn down 25 mm (one inch) inside vent pipe.
- G. Where vented edge decks intersect vertical surfaces, form in one piece, shape to slope down to a point level with and in front of edge-set notched plank; then, down vertically, overlapping base flashing.
- 2.9

2.10 BITUMEN STOPS (NOT USED)

- 2.11 HANGING GUTTERS (NOT USED)
- 2.12 CONDUCTORS (DOWNSPOUTS) (NOT USED)
- 2.13 SPLASHPANS (NOT USED)
- 2.14 REGLETS (NOT USED)
- 2.15 INSULATED EXPANSION JOINT COVERS (NOT USED)
- 2.16 ENGINE EXHAUST PIPE OR FLUE OR STACK FLASHING (NOT USED)

2.17 GOOSENECK ROOF VENTILATORS (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
 - 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
 - 3. Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect

the application. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 01-01-21

07 60 00 - 9

Bancroft Architects + Engineers

- 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.
- Coordinate with masonry work for the application of a skim coat of mortar to surfaces of unit masonry to receive flashing material before the application of flashing.
- 6. Apply a layer of 7 Kg (15 pound) saturated felt followed by a layer of rosin paper to wood surfaces to be covered with copper. Lap each ply 50 mm (2 inch) with the slope and nail with large headed copper nails.
- Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.
- 8. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
- 9. Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.
- 10. Nail continuous cleats on 75 mm (3 inch) on centers in two rows in a staggered position.
- Nail individual cleats with two nails and bend end tab over nail heads. Lock other end of cleat into hemmed edge.
- 12. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a water tight installation.
- 13. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.
- 14. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 01-01-21

07 60 00 - 10

Bancroft Architects + Engineers

- a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
- b. Paint dissimilar metal with a coat of bituminous paint.
- c. Apply an approved caulking material between aluminum and dissimilar metal.
- 15. Paint aluminum in contact with or built into mortar, concrete, plaster, or other masonry materials with a coat of bituminous paint.
- 16. Paint aluminum in contact with absorptive materials that may become repeatedly wet with two coats of bituminous paint or two coats of aluminum paint.
- 17. Bitumen Stops:
 - a. Install bitumen stops for built-up roof opening penetrations through deck and at formed sheet metal gravel stops.
 - b. Nail leg of bitumen stop at 300 mm (12 inch) intervals to nailing strip at roof edge before roofing material is installed.

3.2 THROUGH-WALL FLASHING

- A. General:
 - Install continuous through-wall flashing between top of concrete foundation walls and bottom of masonry building walls; at top of concrete floors; under masonry, concrete, or stone copings and elsewhere as shown.
 - Where exposed portions are used as a counterflashings, lap base flashings at least 100 mm (4 inches) and use thickness of metal as specified for exposed locations.
 - 3. Exposed edge of flashing may be formed as a receiver for two piece counter flashing as specified.
 - Terminate exterior edge beyond face of wall approximately 6 mm (1/4 inch) with drip edge where not part of counter flashing.
 - 5. Turn back edge up 6 mm (1/4 inch) unless noted otherwise where flashing terminates in mortar joint or hollow masonry unit joint.
 - Terminate interior raised edge in masonry backup unit approximately 38 mm (1 1/2 inch) into unit unless shown otherwise.
 - Under copings terminate both edges beyond face of wall approximately
 6 mm (1/4 inch) with drip edge.
 - Lap end joints at least two corrugations, but not less than 100 mm (4 inches). Seal laps with sealant.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 9. Where dowels, reinforcing bars and fastening devices penetrate flashing, seal penetration with sealing compound. Sealing compound is specified in Section 07 92 00, JOINT SEALANTS.
- 10. Coordinate with other work to set in a bed of mortar above and below flashing so that total thickness of the two layers of mortar and flashing are same as regular mortar joint.
- 11. Where ends of flashing terminate turn ends up 25 mm (1 inch) and fold corners to form dam extending to wall face in vertical mortar or veneer joint.
- 12. Turn flashing up not less than 200 mm (8 inch) between masonry or behind exterior veneer.
- 13. When flashing terminates in reglet extend flashing full depth into reglet and secure with lead or plastic wedges spaced 150 mm (6 inch) on center.
- 14. Continue flashing around columns:
 - a. Where flashing cannot be inserted in column reglet hold flashing vertical leg against column.
 - b. Counterflash top edge with 75 mm (3 inch) wide strip of saturated cotton unless shown otherwise. Secure cotton strip with roof cement to column. Lap base flashing with cotton strip 38 mm (1 1/2 inch).
- B. Flashing at Cavity Wall Construction: Where flashing occurs in cavity walls turn vertical portion up against backup under waterproofing, if any, into mortar joint. Turn up over insulation, if any, and horizontally through insulation into mortar joint.
- C. Lintel Flashing when not part of shelf angle flashing:
 - Install flashing full length of lintel to nearest vertical joint in masonry over veneer.
 - Turn ends up 25 mm (one inch) and fold corners to form dam and extend end to face of wall.
 - Turn back edge up to top of lintel; terminate back edge as specified for back-up wall.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

- 3.3 BASE FLASHING (NOT USED)
- 3.4 COUNTERFLASHING (CAP FLASHING OR HOODS) (NOT USED)
- 3.5 REGLETS (NOT USED)
- 3.6 GRAVEL STOPS (NOT USED)
- 3.7 COPINGS (NOT USED)
- 3.8 EXPANSION JOINT COVERS, INSULATED (NOT USED)
- 3.9 ENGINE EXHAUST PIPE OR STACK FLASHING (NOT USED)
- 3.10 HANGING GUTTERS (NOT USED)
- 3.11 CONDUCTORS (DOWNSPOUTS) (NOT USED)
- 3.12 SPLASH PANS (NOT USED)
- 3.13 GOOSENECK ROOF VENTILATORS
 - A. Install on structural curb not less than 200 mm (8 inch) high above roof surface.
 - B. Securely anchor ventilator curb to structural curb with fasteners spaced not over 300 mm (12 inch) on center.
 - C. Anchor gooseneck to curb with screws having neoprene washers at 150 mm (6 inch) on center.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

01-01-21

SECTION 07 84 00 FIRESTOPPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls and floors against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements.
- B. Section 07 92 00, JOINT SEALANTS: Sealants and application.
- C. Section 23 31 00, HVAC DUCTS AND CASINGS: Fire and smoke damper assemblies in ductwork.
- D. Section 23 37 00, AIR OUTLETS AND INLETS: Fire and smoke damper assemblies in ductwork.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
- C. Installer qualifications.
- D. Inspector qualifications.
- E. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- F. List of FM, UL, or WH classification number of systems installed.
- G. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- H. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 QUALITY ASSURANCE

- A. FM, UL, or WH or other approved laboratory tested products will be acceptable.
- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.
- C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

E84-20.....Surface Burning Characteristics of Building Materials

E699-16.....Standard Specification for Agencies Involved in Testing, Quality Assurance, and Evaluating of Manufactured Building Components

E814-13a(2017).....Fire Tests of Penetration Firestop Systems E2174-20a....Standard Practice for On-Site Inspection of Installed Firestop Systems

E2393-20.....Standard Practice for On-Site Inspection of Installed Fire Resistive Joint Systems and Perimeter Fire Barriers

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

C. FM Global (FM):

Annual Issue Approval Guide Building Materials

4991-13..... Approval of Firestop Contractors

- D. Underwriters Laboratories, Inc. (UL): Annual Issue Building Materials Directory
- E. Annual Issue Fire Resistance Directory 723-Edition 11(2018)....Standard for Test for Surface Burning Characteristics of Building Materials 1479-04(2015).....Fire Tests of Penetration Firestops
- F. Intertek Testing Services Warnock Hersey (ITS-WH): Annual Issue Certification Listings
- G. Environmental Protection Agency (EPA): 40 CFR 59(2014).....National Volatile Organic Compound Emission Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 inches) nominal pipe or 0.01 square meter (16 square inches) in overall cross sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

- 5. VOC Content: Firestopping sealants and sealant primers to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.
- D. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- E. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- F. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- G. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- H. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - For floor penetrations with annular spaces exceeding 101 mm (4 inches) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

loads involved either by installing floor plates or by other means

- acceptable to the firestop manufacturer.
- 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Provide silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Provide mineral fiber filler and bond breaker behind sealant.
- C. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
- C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 01-01-21

01-01-21

D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

3.3 INSTALLATION

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

3.5 INSPECTIONS AND ACCEPTANCE OF WORK

- A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).
- B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

- - - E N D - - -

04-01-21

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section covers interior and exterior sealants and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- E. Glazing: Section 08 80 00, GLAZING.
- G. Sound Rated Gypsum Partitions/Sound Sealants: Section 09 29 00, GYPSUM BOARD.
- H. Mechanical Work: Section 22 05 11 COMMON WORK RESULTS FOR PLUMBING, Section 23 05 10 Common Work Results for Boiler Plant and Steam Generation, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
 - Test elastomeric joint sealants according to SWRI's Sealant Validation Program for compliance with requirements specified by

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

reference to ASTM C920 for adhesion and cohesion under cyclic movement, adhesion-in peel, and indentation hardness.

- 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.
- D. Preconstruction Field-Adhesion Testing: Before installing elastomeric sealants, field test their adhesion to joint substrates according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1.1 in ASTM C1193 or Method A, Tail Procedure, in ASTM C1521.
 - Locate test joints where indicated in construction documents or, if not indicated, as directed by COR.
 - 2. Conduct field tests for each application indicated below:
 - a. Each type of elastomeric sealant and joint substrate indicated.
 - b. Each type of non-elastomeric sealant and joint substrate indicated.
 - 3. Notify COR seven (7) days in advance of dates and times when test joints will be erected.
- F. Mockups: Before installing joint sealants, apply elastomeric sealants as follows to verify selections and to demonstrate aesthetic effects and qualities of materials and execution:
 - Joints in mockups of assemblies that are indicated to receive elastomeric joint sealants.

1.4 CERTIFICATION:

A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
- C. Installer qualifications.
- D. Contractor certification.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-21

04-01-21

- E. Manufacturer's installation instructions for each product used.
- F. Cured samples of exposed sealants for each color.
- G. Manufacturer's Literature and Data:
 - 1. Primers
 - 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other.
- H. Manufacturer warranty.

1.6 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below
 4.4 degrees C (40 degrees F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F) or less than 5 degrees C (40 degrees F).

1.8 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. ASTM International (ASTM): C509-06..... Elastomeric Cellular Preformed Gasket and Sealing Material C612-14......Mineral Fiber Block and Board Thermal Insulation C717-14a.....Standard Terminology of Building Seals and Sealants C734-06(R2012).....Test Method for Low-Temperature Flexibility of Latex Sealants after Artificial Weathering C794-10.....Test Method for Adhesion-in-Peel of Elastomeric Joint Sealants C919-12.....Use of Sealants in Acoustical Applications. C920-14a.....Elastomeric Joint Sealants. C1021-08 (R2014)Laboratories Engaged in Testing of Building Sealants C1193-13.....Standard Guide for Use of Joint Sealants. C1248-08 (R2012) Test Method for Staining of Porous Substrate by Joint Sealants C1330-02(R2013).....Cylindrical Sealant Backing for Use with Cold Liquid Applied Sealants C1521-13.....Standard Practice for Evaluating Adhesion of Installed Weatherproofing Sealant Joints D217-10.....Test Methods for Cone Penetration of Lubricating Grease D1056-14.....Specification for Flexible Cellular Materials-Sponge or Expanded Rubber Contract No. 36C26319D0022 Station Project No. 656-19-039

Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

04-01-21

E84-09.....Surface Burning Characteristics of Building

Materials

- C. Sealant, Waterproofing and Restoration Institute (SWRI). The Professionals' Guide
- D. Environmental Protection Agency (EPA):
 - 40 CFR 59(2014).....National Volatile Organic Compound Emission Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. Exterior Sealants:
 - S-1: Vertical surfaces, provide non-staining ASTM C920, Type S or M, Grade NS, Class 25, Use NT.
 - S-2: Horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T.
 - 3. Provide location(s) of exterior sealant as follows:
 - a. Joints formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Provide sealant at exterior surfaces of exterior wall penetrations.
 - b. Metal to metal.
 - c. Voids where items penetrate exterior walls.
 - d. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels.
- B. Floor Joint Sealant:
 - 1. S-3: ASTM C920, Type S or M, Grade P, Class 25, Use T.
- C. Interior Sealants:
 - VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Architectural Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.
 - S-4: Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25, Use NT.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- 3. S-5: Food Service: Use a Vinyl Acetate Homopolymer, or other low VOC, non-toxic sealant approved for use in food preparation areas.
- 4. Provide location(s) of interior sealant as follows:
 - a. Typical narrow joint 6 mm, (1/4 inch) or less at walls and adjacent components.
 - b. Perimeter of doors, windows, access panels which adjoin concrete or masonry surfaces.
 - c. Interior surfaces of exterior wall penetrations.
 - d. Joints at masonry walls and columns, piers, concrete walls or exterior walls.
 - e. Perimeter of lead faced control windows and plaster or gypsum wallboard walls.
 - f. Exposed isolation joints at top of full height walls.
 - g. Joints between bathtubs and ceramic tile; joints between shower receptors and ceramic tile; joints formed where nonplanar tile surfaces meet.
 - h. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change.
 - Behind escutcheon plates at valve pipe penetrations and showerheads in showers.
- D. Acoustical Sealant:
 - Conforming to ASTM C919; flame spread of 25 or less; and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Acoustical sealant have a consistency of 250 to 310 when tested in accordance with ASTM D217; remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C734; and be non-staining.
 - 2. Provide location(s) of acoustical sealant as follows:
 - a. Exposed acoustical joint at sound rated partitions.
 - b. Concealed acoustic joints at sound rated partitions.
 - c. Joints where item pass-through sound rated partitions.

2.2 COLOR:

- A. Sealants used with exposed masonry are to match color of mortar joints.
- B. Sealants used with unpainted concrete are to match color of adjacent concrete.

07 92 00 - 6

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-21

C. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents.

2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.4 WEEPS: (NOT USED)

- A. Weep/Vent Products: Provide the following unless otherwise indicated or approved.
 - Round Plastic Tubing: Medium-density polyethylene, 10 mm (3/8-inch)
 OD by thickness of stone or masonry veneer.

2.5 FILLER:

- A. Mineral fiberboard: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

2.7 CLEANERS-NON POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide).
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following: a. Metal.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-21

- b. Glass.
- c. Porcelain enamel.
- d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test.
 - Apply primer prior to installation of back-up rod or bond breaker tape.
 - Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces.

3.3 BACKING INSTALLATION:

- A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of backing rod and sealants.
- D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.

3.4 SEALANT DEPTHS AND GEOMETRY:

A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between 5 degrees C and 38 degrees C (40 degrees and 100 degrees F).
 - Do not install polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
 - Do not install sealant type listed by manufacture as not suitable for use in locations specified.
 - Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
 - 5. Avoid dropping or smearing compound on adjacent surfaces.
 - 6. Fill joints solidly with compound and finish compound smooth.
 - 7. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition.
 - Finish paving or floor joints flush unless joint is otherwise detailed.
 - 9. Apply compounds with nozzle size to fit joint width.
 - Test sealants for compatibility with each other and substrate. Use only compatible sealant. Submit test reports.
 - 11. Replace sealant which is damaged during construction process.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants.
- C. Interior Sealants: Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04-01-21

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems Bancroft Architects + Engineers

 Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.

- 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
- Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
- 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
- 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

- A. Field-Adhesion Testing: Field-test joint-sealant adhesion to joint substrates according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C1193 or Method A, Tail Procedure, in ASTM C1521.
 - Extent of Testing: Test completed elastomeric sealant joints as follows:
 - a. Perform 10 tests for first 305 m (1000 feet) of joint length for each type of elastomeric sealant and joint substrate.
 - b. Perform one test for each 305 m (1000 feet) of joint length thereafter or one test per each floor per elevation.
- B. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log.
- C. Inspect tested joints and report on following:
 - Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate.
 - Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria.
 - 3. Whether sealants filled joint cavities and are free from voids.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 21

07 92 00 - 11

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems Bancroft Architects + Engineers

04-01-21

- 4. Whether sealant dimensions and configurations comply with specified requirements.
- D. Record test results in a field adhesion test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant fill, sealant configuration, and sealant dimensions.
- E. Repair sealants pulled from test area by applying new sealants following same procedures used to originally seal joints. Ensure that original sealant surfaces are clean and new sealant contacts original sealant.
- F. Evaluation of Field-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements, will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer.
- B. Leave adjacent surfaces in a clean and unstained condition.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

DIVISION 08

Bancroft Architects + Engineers

01-01-21

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Hollow metal doors hung in hollow metal frames at interior locations.
 - 2. Hollow metal door frames for wood doors at interior locations.

1.2 RELATED WORK

A. Section 08 71 00, DOOR HARDWARE: Door Hardware:

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standard Institute (ANSI): A250.8-2014.....Standard Steel Doors and Frames
- C. ASTM International (ASTM):

A240/A240M-15b.....Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications

A653/A653M-15.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the

Hot-Dip

A1008/A1008M-15.....Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy and High Strength Low Alloy with Improved Formability, Solution Hardened, and Bake Hardenable

B209-14.....Aluminum and Aluminum-Alloy Sheet and Plate B209M-14....Aluminum and Aluminum-Alloy Sheet and Plate (Metric)

B221-14.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

B221M-13.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric)

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 1

Bancroft Architects + Engineers

01-01-21

D3656/D3656M-13.....Insect Screening and Louver Cloth Woven from Vinyl Coated Glass Yarns

E90-09..... Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and

Elements

D. Federal Specifications (Fed. Spec.):

L-S-125B..... Screening, Insect, Nonmetallic

- E. Master Painters Institute (MPI):
 - No. 18..... Primer, Zinc Rich, Organic
- F. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- G. National Fire Protection Association (NFPA): 80-16......Fire Doors and Other Opening Protectives

H. UL LLC (UL):

10C-09.....Positive Pressure Fire Tests of Door Assemblies 1784-15....Air Leakage Tests of Door Assemblies and Other Opening Protectives

I. Department of Veterans Affairs

VA Physical Security and Resiliency Design Manual October 1, 2020

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Include schedule showing each door and frame requirements, including fire label where required, for openings.
 - 3. Installation instructions.
- D. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- E. Test reports: Certify each product complies with specifications.
- F. Qualifications: Substantiate qualifications comply with specifications.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 2

Bancroft Architects + Engineers

01-01-21

1. Manufacturer.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.

1.6 DELIVERY

- A. Fasten temporary steel spreaders across the bottom of each door frame before shipment.
- B. Deliver products in manufacturer's original sealed packaging.
- C. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- D. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight // conditioned // facility.
- B. Protect products from damage during handling and construction operations.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Design hollow metal doors and frames complying with specified performance:
 - Fire Doors and Frames: UL 10C; NFPA 80 labeled.
 a. Fire Ratings: See drawings.
 - 2. Smoke Control Doors and Frames: UL 1784; NFPA 80 labeled, maximum 0.15424 cubic meter/second/square meter (3.0 cubic feet/minute/square foot) at 24.9 Pa (0.10 inches water gauge) pressure differential.
 - Sound Rated Doors and Frames: Minimum 45 sound transmission class (STC) when tested according to ASTM E90.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 3

Bancroft Architects + Engineers

01-01-21

2.2 MATERIALS

A. Sheet Steel: ASTM A1008/A1008M, cold-rolled.

2.3 PRODUCTS - GENERAL

- A. Provide hollow metal doors and frames from one manufacturer.
- B. Sustainable Construction Requirements:
 - 1. Steel Recycled Content: 30 percent total recycled content, minimum.

2.4 HOLLOW METAL DOORS

- A. Hollow Metal Doors: ANSI A250.8; 44 mm (1-3/4 inches) thick. See drawings for sizes and designs.
 - 1. Interior Doors: Level 3 and Physical Performance Level A, extra-heavy duty; Model 2, seamless at all locations.
- B. Door Faces:
 - 1. Interior Doors: Sheet steel.
- C. Door Cores:
 - 1. Interior Doors: Vertical steel stiffeners.
 - 2. Fire Doors: Manufacturer's standard complying with specified fire rating performance.

2.5 HOLLOW METAL FRAMES

- A. Hollow Metal Frames: ANSI A250.8; face welded. See drawings for sizes and designs.
 - 1. Interior Frames:
 - a. Level 3 Hollow Metal Doors: 1.3 mm (0.053 inch) thick.
 - b. Wood Doors: 1.3 mm (0.053 inch) thick.
- B. Frame Materials:
 - 1. Interior Frames: Sheet steel.

2.6 LOUVERS (NOT USED)

2.7 FABRICATION

- A. Hardware Preparation: ANSI A250.8; for hardware specified in Section 08 71 00, DOOR HARDWARE.
- B. Hollow Metal Door Fabrication:
 - Close top edge of exterior doors flush and seal to prevent water intrusion.
 - 2. Fill spaces between vertical steel stiffeners with insulation.
- C. Fire and Smoke Control Doors:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 4

Bancroft Architects + Engineers

01-01-21

1. Close top and vertical edges flush.

a. F.

- 2. Fire and Smoke Control Door Clearances: NFPA 80.
- D. Sound Rated Doors:
 - 1. Seals: Integral spring type automatic door bottom seal.
 - Fabricate vision panel cutouts and frames to receive double glazing as shown on drawings.
- E. Hollow Metal Frame Fabrication:
 - 1. Fasten mortar guards to back of hardware reinforcements.
 - Concealed Closers in Head Frame: Provide 1 mm (0.042 inch) thick steel removable stop sections for access to concealed face plates and control valves, except when cover plates are furnished with closer.
 - 3. Terminated Stops: ANSI A250.8.
 - 4. Frame Anchors:
 - a. Floor anchors:
 - Provide extension type floor anchors to compensate for depth of floor fills.
 - Provide 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive floor fasteners.
 - 3) Provide 50 mm by 50 mm by 9 mm (2 inch by 2 inch by 3/8 inch) clip angle for lead lined frames, drilled for floor fasteners.
 - Provide mullion 2.3 mm (0.093 inch) thick steel channel anchors, drilled for two floor fasteners and frame anchor screws.
 - 5) Provide continuous 1 mm (0.042 inch) thick steel rough bucks drilled for floor fasteners and frame anchor screws for sill sections.
 - a) Space floor bolts50 mm (24 inches) on center.
 - b. Jamb anchors:
 - 1) Place anchors on jambs:
 - a) Near top and bottom of each frame.
 - b) At intermediate points at maximum 600 mm (24 inches) spacing.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 5

Bancroft Architects + Engineers

01-01-21

- 2) Form jamb anchors from steel minimum 1 mm (0.042 inch) thick.
- 3) Anchors set in masonry: Provide adjustable anchors designed for friction fit against frame and extended into masonry minimum 250 mm (10 inches). Provide one of following types:
 a) Wire Loop Type: 5 mm (3/16 inch) diameter wire.
 - b) T-Shape type.
 - c) Strap and stirrup type: Corrugated or perforated sheet steel.
- Anchors for stud partitions: Provide tabs for securing anchor to sides of studs. Provide one of the following:
 - a) Welded type.
 - b) Lock-in snap-in type.
- 5) Anchors for frames set in prepared openings:
 - a) Steel pipe spacers 6 mm (1/4 inch) inside diameter, welded to plate reinforcing at jamb stops, or hat shaped formed strap spacers 50 mm (2 inches) wide, welded to jamb near stop.
 - b) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass through frame and spacers.
- F. Sound Rated Door Frames:
 - 1. Seals: Integral continuous gaskets on frames.

2.8 FINISHES

- A. Steel: ANSI A250.8; shop primed.
- B. Finish exposed surfaces after fabrication.

2.9 ACCESSORIES

- A. Primers: ANSI A250.8.
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Welding Materials: AWS D1.1/D1.1M, type to suit application.
- D. Clips Connecting Members and Sleeves: Match door faces.
- E. Fasteners: stainless steel.
 - 1. Metal Framing: Steel drill screws.
 - 2. Masonry and Concrete: Expansion bolts and power actuated drive pins.
- F. Anchors: Stainless steel.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 6

Bancroft Architects + Engineers

01-01-21

- G. Galvanizing Repair Paint: MPI No. 18.
- H. Insulation: Unfaced mineral wool.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Apply barrier coating to metal surfaces in contact with cementitious materials to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
 - 2. Install fire doors and frames according to NFPA 80.
 - 3. Install smoke control doors and frames according to NFPA 105.

3.3 FRAME INSTALLATION

- A. Apply barrier coating to concealed surfaces of frames built into masonry.
- B. Plumb, align, and brace frames until permanent anchors are set.
 - Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - Use wood spreaders at bottom of frame when shipping spreader is removed.
 - Where construction permits concealment, leave shipping spreaders in place after installation, otherwise remove spreaders when frames are set and anchored.
 - Remove wood spreaders and braces when walls are built and jamb anchors are secured.
- C. Floor Anchors:
 - 1. Anchor frame jambs to floor with two expansion bolts.
 - a. Lead Lined Frames: Use 9 mm (3/8 inch) diameter bolts.
 - b. Other Frames: Use 6 mm (1/4 inch) diameter bolts.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 7

Bancroft Architects + Engineers

01-01-21

- 2. Power actuated drive pins are acceptable to secure frame anchors to concrete floors.
- D. Jamb Anchors:
 - 1. Masonry Walls:
 - a. Embed anchors in mortar.
 - b. Fill space between frame and masonry with grout or mortar as walls are built.
 - Metal Framed Walls: Secure anchors to sides of studs with two fasteners through anchor tabs.
 - 3. Prepared Masonry and Concrete Openings:
 - a. Direct Securement: 6 mm (1/4 inch) diameter expansion bolts through spacers.
 - b. Subframe or Rough Buck Securement:
 - 6 mm (1/4 inch) diameter expansion bolts on 600 mm (24 inch) centers.
 - 2) Power activated drive pins on 600 mm (24 inches) centers.
 - c. Secure two-piece frames to subframe or rough buck with machine screws on both faces.
- E. Frames for Sound Rated Doors: Fill frames with insulation.
- F. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.4 DOOR INSTALLATION

- A. Install doors plumb and level.
- B. Adjust doors for smooth operation.
- C. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.5 CLEANING

A. Clean exposed door and frame surfaces. Remove contaminants and stains.

3.6 PROTECTION

- A. Protect doors and frames from traffic and construction operations.
- B. Remove protective materials immediately before acceptance.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 8

Bancroft Architects + Engineers

01-01-21

C. Repair damage.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 11 13 - 9

Bancroft Architects + Engineers

01-01-21

SECTION 08 14 00 INTERIOR WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior flush wood doors with transparent finish.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Paints and Coatings and Composite Wood and Agrifiber VOC Limits.
- B. Section 08 71 00, DOOR HARDWARE: Door Hardware including hardware location (height).
- C. Section 08 11 13, HOLLOW METAL DOORS AND FRAMES: Installation of Doors.
- D. Section 08 71 00, DOOR HARDWARE: Installation of Door Hardware.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Window and Door Manufacturers Association (ANSI/WDMA):
 - 1. I.S. 1A-13 Architectural Wood Flush Doors.
 - 2. I.S. 6A-13 Interior Architectural Stile and Rails Doors.
- C. ASTM International (ASTM):
 - E90-09(2016) Laboratory Measurements of Airborne Sound Transmission Loss of Building Partitions and Elements.
- D. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
 - 2. 252-12 Fire Tests of Door Assemblies.
- E. UL LLC (UL):
 - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
- F. Window and Door Manufacturers Association (WDMA):
 - 1. TM 7-14 Cycle-Slam Test.
 - 2. TM 8-14 Hinge Loading Test.
 - 3. TM 10-14 Screw Holding Capacity.

1.4 SUBMITTALS

A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

08 14 00 - 1

Bancroft Architects + Engineers

01-01-21

- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Indicate project specific requirements not included in Manufacturer's Literature and Data submittal.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Fire rated doors showing conformance with NFPA 80.
- D. Samples:
 - Corner section of flush veneered door 300 mm (12 inches) square, showing details of construction, labeled to show grade and type number and conformance to specified standard.
 - Veneer sample 200 mm by 275 mm (8 inch by 11 inch) showing specified wood species sanded to receive a transparent finish. Factory finish veneer sample where the prefinished option is accepted.
- E. Sustainable Construction Submittals:
 - 1. Low Pollutant-Emitting Materials:

Show volatile organic compound types and quantities.

- F. Test Reports: Indicate each product complies with specifications.
 - 1. Screw Holding Capacity Test.
 - 2. Cycle-Slam Test.
 - 3. Hinge-Loading Test.
- G. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly and presently manufactures specified products.
 - Manufactures specified products with satisfactory service on five similar installations for minimum five years.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
 - 1. Minimum 0.15 mm (6 mil) polyethylene bags or cardboard packaging to remain unbroken during delivery and storage.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, and manufacture date.
 - 1. Identify door opening corresponding to Door Schedule.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

08 14 00 - 2

Bancroft Architects + Engineers

01-01-21

C. Before installation, return or dispose of products within distorted, damaged, or opened packaging. Retain packaging for door protection after installation.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight, conditioned facility.
 - 1. Store doors according to ANSI/WDMA I.S. 1A.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum
 48 hours before installation.
 - Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
 - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

Comply with door manufacturer's instructions for relative humidity.

1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant interior factory finished flush wood doors against material and manufacturing defects.
 - 1. Warranty Period: Lifetime of original installation.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Basis of Design: Station standard. White Birch, rotary cut, stained to match existing.
- B. Provide each product from one manufacturer.
- C. Sustainable Construction Requirements:
 - Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - 2. Paints and coatings.
 - 3. Composite wood and agrifiber.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

2.2 FLUSH WOOD DOORS

- A. General:
 - 1. ANSI/WDMA I.S. 1A, Extra Heavy Duty.
 - 2. Adhesive: Type II.
 - 3. Core: Structural composite lumber, except when mineral core is required for fire rating.
 - Thickness: 44 mm (1-3/4 inches) unless otherwise shown or specified.
- B. Faces:
 - 1. ANSI/WDMA I.S. 1A.
 - 2. One species throughout project unless scheduled or otherwise shown.
 - Transparent Finished Faces: Premium Grade. rotary cut, white birch.
 AA Grade face veneer.
 - Match face veneers for doors for uniform effect of color and grain at joints.
 - 5. Door Edges: Same species as door face veneer, except maple is acceptable for stile face veneer on birch doors.
 - In existing buildings, where doors are required to have transparent finish, use wood species, grade, and assembly of face veneers to match adjacent existing doors.
 - 7. Painted Finishes: Custom Grade, mill option close grained hardwood, premium or medium density overlay.
 - 8. Factory sand doors for finishing.
- C. Fire-Rated Wood Doors:
 - 1. Fire Resistance Rating:
 - a. B Label: 1-1/2 hours.
 - b. C Label: 3/4 hour.
 - 2. Provide 20-minute smoke-rated doors in smoke-rated barriers.
 - 3. Labels:
 - a. Comply with NFPA 252, UL 10C, and labeled by qualified testing and inspection agency showing fire resistance rating.
 - 1) Metal labels with raised or incised markings.
 - Performance Criteria for Stiles of Doors Utilizing Standard Mortise Leaf Hinges:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

- a. Hinge Loading: WDMA TM 8. Average of 10 test samples for Extra Heavy-Duty doors.
- b. Direct Screw Withdrawal: WDMA TM 10 for Extra Heavy-Duty doors. Average of 10 test samples using a steel, fully threaded #12 wood screw.
- c. Cycle-Slam: 1,000,000 cycles with no loose hinge screws or other visible signs of failure when tested according to WDMA TM 7.
- 5. Hardware Reinforcement:
 - a. Provide fire and smoke rated doors with hardware reinforcement blocking.
 - b. Size of lock blocks as required to secure hardware specified.
 - c. Top, Bottom and Intermediate Rail Blocks: Minimum 125 mm (5 inches) by full core width.
 - d. Reinforcement blocking in compliance with labeling requirements.Mineral material similar to core is not acceptable.
- Other Core Components: Manufacturer's standard as allowed by labeling requirements.
- D. Sound Rated Doors:
 - Fabricated as specified for flush wood doors with additional construction requirements to comply with specified sound transmission class (STC).
 - STC Rating of door assembly in place when tested according to ASTM E90 by independent acoustical testing laboratory minimum 35.
 a. Accessories:
 - 1) Frame Gaskets and Automatic Door Bottom Seal: As specified in Section 08 71 00, DOOR HARDWARE.

2.3 STILE AND RAIL WOOD DOORS (NOT USED)

2.4 FABRICATION

- A. Factory machine interior wood doors to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
 - 1. Factory fit fire rated doors according to NFPA 80.
- B. Rout doors for hardware using templates and location heights specified in Section 08 71 00, DOOR HARDWARE.
- C. Factory fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (2 inches) of door thickness, undercut where shown.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

- D. Clearances between Doors and Frames and Floors:
 - 1. Fire Rated Doors: Comply with NFPA 80.
 - a. Doors with Automatic Bottom Seal: Maximum clearance 10 mm (3/8 inch) at threshold.
 - b. Other Door Bottoms: Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified.
 - 2. Door Jambs, Heads, and Meeting Stiles: Maximum 3 mm (1/8 inch).
- E. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.
- F. Identify each door on top edge.
 - Mark with stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, date of manufacture and quality.
 - Mark door or provide separate certification including name of inspection organization.
 - 3. Identify door manufacturing standard, including glue type.
 - 4. Identify veneer and quality certification.

2.5 FINISHES

- A. Field Finished Doors: Seal top and bottom edges of doors with two coats of catalyzed polyurethane or water-resistant sealer.
- B. Factory Transparent Finish:
 - 1. Factory finish flush wood doors.
 - ANSI/WDMA I.S. 1A Section F-3 Finish System Descriptions for System 5, Conversion Varnish or System 7, Catalyzed Vinyl.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Verify door frames are properly anchored.
 - 2. Verify door frames are plumb, square, in plane, and within tolerances for door installation.
- B. Protect existing construction and completed work from damage.
- C. Install astragal on active leaf of pair of smoke doors and one leaf of double egress smoke doors.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

08 14 00 - 6

Bancroft Architects + Engineers

01-01-21

3.2 INSTALLATION

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - 1. Install fire rated doors according to NFPA 80.
 - 2. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 PROTECTION

- A. After installation, place shipping container over door and tape in place.
 - 1. Do not apply tape to door faces and edges.
- B. Provide protective covering over exposed hardware in addition to covering door.
- C. Maintain covering in good condition until removal is directed by Contracting Officer's Representative.

- - E N D - -

Bancroft Architects + Engineers

04-01-22

SECTION 08 31 13 ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Access doors and panels installed in walls and ceilings.

1.2 RELATED WORK

- A. Section 05 50 00, METAL FABRICATIONS: Wire Mesh and Screen Access Doors.
- B. Section 08 71 00, DOOR HARDWARE: Lock Cylinders.
- C. Section 09 91 00, PAINTING: Field Painting.
- D. Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS: Access Doors for Control or Drain Valves.
- E. Section 22 40 00, PLUMBING FIXTURES: Access Doors for Plumbing Valves.
- F. Section 23 31 00, HVAC DUCTS AND CASINGS: Locations of Access Doors for Ductwork Cleanouts.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Welding Society (AWS): D1.3/D1.3M-2018.....Structural Welding Code - Sheet Steel (6th Edition.
- C. ASTM International (ASTM):

A653/A653M-20.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Sip Process.

A1008/A1008M-18.....Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable.

- A666-15.....Annealed or Cold-Worked Austenitic Stainless
 - Steel sheet, Strip, Plate, and Flat Bar.
- E119-20.....Fire Test of Building Construction and

Materials.

D. National Fire Protection Association (NFPA):

80-2019 Edition.....Fire Doors and Other Opening Protectives.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

04-01-22

252-2017 Edition.....Fire Tests of Door Assemblies.

- E. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual.
- F. UL LLC (UL):

Listed......Online Certifications Directory.

10B-08 (Edition 10).....Standard for Fire Tests of Door Assemblies.

263-11 (Edition 14)....Fire Tests of Building Construction and

Materials.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, , production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.7 FIELD CONDITIONS

- A. Field Measurements: Verify field conditions affecting access door fabrication and installation. Show field measurements on Submittal Drawings.
 - Coordinate field measurement and fabrication schedule to avoid delay.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Steel Sheet: ASTM A1008/A1008M.
- B. Galvanized Steel: ASTM A653/A653M.
- C. Stainless Steel: ASTM A666; Type 302 or Type 304.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Finish painted to match adjacent surfaces.
- B. Provide each product from one manufacturer.
- C. Sustainable Construction Requirements:
 - Steel Access Doors Recycled Content: 30 percent total recycled content, minimum.

2.3 ACCESS DOORS, FIRE-RATED

- A. Provide at all required access door locations.
- B. Door Construction:
 - 1. Ceiling Access Door Construction: ASTM E119 or UL 263.
 - 2. Wall Access Doors: NFPA 252 or UL 10B.
- C. Label: Class B opening according to UL 10B or test by another nationally recognized laboratory. 1 hour fire-rated , with maximum temperature rise of 120 degrees C (216 degrees F).
- D. Door Panel: Minimum 0.9 mm (0.0359 inch) thick steel sheet, with mineral-fiber insulation core, insulated sandwich type construction.
- E. Frame: Minimum 1.5 mm (0.0598 inch) thick steel sheet, depth and configuration to suit material and construction type where installed.
 - 1. Frame Flange: Provide at units installed in concrete, masonry, or gypsum board.
 - 2. Exposed Joints in Flange: Weld and grind smooth.
- F. Provide automatic closing device.
- G. Hinge: Continuous stainless steel hinge with stainless steel pin.
- H. Lock: Self-latching, mortise type with provision for fitting flush a standard screw-in type lock cylinder.
 - 1. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
 - 2. Latch release device operable from inside of door.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

04-01-22

Bancroft Architects + Engineers

04-01-22

I. Anchors for Fire-Rated Access Doors: Comply with requirements of applicable fire test.

2.4 ACCESS DOORS, FLUSH PANEL, NON-RATED (NOT USED)

2.5 ACCESS DOOR, RECESSED PANEL, NON-RATED (NOT USED)

2.6 FABRICATION - GENERAL

- A. Size: Minimum 600 mm (24 inches) square door unless otherwise shown.
- B. Component Fabrication: Straight, square, flat and in same plane where required.
 - Exposed Edges: Slightly rounded, without burrs, snags and sharp edges.
 - 2. Exposed Welds: Continuous, ground smooth.
 - 3. Welding: AWS D1.3/D1.3M.
- C. Anchoring: Make provisions in frame for anchoring to adjacent construction. Provide anchors in size, number and location on four sides to secure access door to substrate. Provide anchors as required by fire test.

2.7 FINISHES

- A. Steel Paint Finish:
 - Powder-Coat Finish: Manufacturer's standard two-coat finish system consisting of the following:
 - a. One coat primer.
 - b. One coat thermosetting topcoat.
 - c. Dry-film Thickness: 0.05 mm (2 mils) minimum.
 - d. Color: Match adjacent finish surfaces.
- B. Stainless Steel Exposed Surfaces: NAAMM AMP 500; No.06 Metal Finishes.

2.8 ACCESSORIES

- A. Fasteners: Type and size recommended by access door manufacturer, to suit application.
 - 1. Other Access Doors: Stainless steel fasteners.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Verify access door locations and sizes provide required maintenance access to installed building services components.
- B. Protect existing construction and completed work from damage.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install access doors and panels permitting access to service valves, traps, dampers, cleanouts, and other mechanical, electrical and conveyor control items concealed in walls and partitions, and concealed above gypsum board ceilings.
- C. Install fire rated access door according to NFPA 80.
- D. Install fire-rated doors in all partitions and ceilings.
- E. Install flush access panels in partitions and in gypsum board ceilings.

3.3 ACCESS DOOR AND FRAME INSTALLATION

- A. Wall Installations: Install access doors in openings with sides vertical.
- B. Ceiling Installations: Install access doors parallel to ceiling suspension grid or room partitions.
- C. Frames without Flanges: Install frame flush with surrounding finish surfaces.
- D. Frames with Flanges: Overlap opening, with face uniformly spaced from finish surface.
- E. Recessed Panel Access Doors: Install with face of surrounding materials flush with door panel installed finish.
- F. Secure frames to adjacent construction with fasteners.
- G. Install type, size and quantity of anchoring device suitable for material surrounding opening to maintain alignment, and resist displacement, during normal use of access door.
- H. Field Painting Primed Access Doors: Where required to match adjacent wall surface, comply with the requirements of Section 09 91 00, PAINTING.

3.4 ADJUSTMENT

- A. Adjust hardware so door panel opens freely.
- B. Adjust door when closed so door panel is centered in frame.

- - E N D - -

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 22

Bancroft Architects + Engineers

05-01-22

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 14 00, WOOD DOORS Section 08 11 13, HOLLOW METAL DOORS AND FRAMES
- C. Painting: Section 09 91 00, PAINTING.
- D. Electrical: Division 26, ELECTRICAL.

1.3 GENERAL

- A. All hardware shall comply with ABAAS, (Architectural Barriers Act Accessibility Standard) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.
 - 4. Exit devices.

5. Floor closers. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

05-01-22

1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
 - 1. Locks, latchsets, and panic hardware: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: AHC certified hardware consultant to prepare and submit hardware schedule in the following form:

Hardware Item	Quantity	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

- C. Samples and Manufacturers' Literature:
 - Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

 Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.

05 - 01 - 22

D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to COR for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in COR's office until all other similar items have been installed in project, at which time the COR will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Project Engineer and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.

10. Cleaning. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

1.9 INSTRUCTIONS

A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.

SPEC WRITER NOTE: Delete following paragraph if new hospital station, or where existing station is to be rekeyed.

05-01-22

B. Keying: All cylinders shall be keyed into existing Grand Master Key System. Provide removable core cylinders that are removable only with a special key or tool without disassembly of knob or lockset. Cylinders shall be 7 pin type. Keying information shall be furnished at a later date by the COR.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- B. ASTM International (ASTM):

F883-13.....Padlocks

E2180-18.....Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s)

In Polymeric or Hydrophobic Materials

C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

A156.1-06.....Butts and Hinges A156.2-03...Bored and Pre-assembled Locks and Latches A156.3-08....Exit Devices, Coordinators, and Auto Flush Bolts A156.4-08...Door Controls (Closers) A156.5-14...Cylinders and Input Devices for Locks. A156.6-05...Architectural Door Trim A156.8-05...Door Controls-Overhead Stops and Holders

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

05-01-22 A156.11-14.....Cabinet Locks A156.12-05Interconnected Locks and Latches A156.13-05......Mortise Locks and Latches Series 1000 A156.14-07Sliding and Folding Door Hardware A156.15-06.....Release Devices-Closer Holder, Electromagnetic and Electromechanical A156.16-08.....Auxiliary Hardware A156.17-04Self-Closing Hinges and Pivots A156.18-06.....Materials and Finishes A156.20-06Strap and Tee Hinges, and Hasps A156.21-09.....Thresholds A156.22-05......Door Gasketing and Edge Seal Systems A156.23-04.....Electromagnetic Locks A156.24-03.....Delayed Egress Locking Systems A156.25-07Electrified Locking Devices A156.26-06.....Continuous Hinges A156.28-07Master Keying Systems A156.29-07Exit Locks and Alarms A156.30-03High Security Cylinders A156.31-07Electric Strikes and Frame Mounted Actuators A156.36-10.....Auxiliary Locks A250.8-03.....Standard Steel Doors and Frames D. National Fire Protection Association (NFPA): 80-10..... Fire Doors and Other Opening Protectives 101-09....Life Safety Code E. Underwriters Laboratories, Inc. (UL): Building Materials Directory (2008)

PART 2 - PRODUCTS

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only five-knuckle hinges. The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

rooms, kitchens, janitor rooms, etc. shall be of stainless steel material.

05 - 01 - 22

- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
 - Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
 - 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges.
 - 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm x 114 mm (4-1/2 inches x 4-1/2 inches) hinges.
 - 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
 - 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
 - 7. Provide heavy-weight hinges where specified.
 - At doors weighing 330 kg (150 pounds) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 CONTINUOUS HINGES

2.3 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer for each type specified.

2.4 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
 - 2. Where specified, closer shall have hold-open feature.
 - 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
 - 4. Material of closer body shall be forged or cast.
 - 5. Arm and brackets for closers shall be steel, malleable iron or high

strength ductile cast iron.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

05-01-22

- 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
- 7. Closers shall have full size metal cover; plastic covers will not be accepted.
- 8. Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
- 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
- 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
- 11. Provide parallel arm closers with heavy duty rigid arm.
- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 $\frac{1}{2}$ " (38mm) minimum piston diameter.

2.5 FLOOR CLOSERS AND FLOOR PIVOT SETS

A. Comply with ANSI A156.4. Provide stainless steel floor plates for floor closers and floor pivots, except where metal thresholds occur. Provide cement case for all floor closers. Floor closers specified for fire doors shall comply with Underwriters Laboratories, Inc., requirements for concealed type floor closers for classes of fire doors indicated on drawings. Hold-open mechanism, where required, shall engage when door is opened 105 degrees, except when door swing is limited by building construction or equipment, the hold-open feature shall engage when door is opened approximately 90 degrees. The hold-open mechanism shall be

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

selectable on/off by turning a screw through the floor plate. Floor closers shall have adjustable hydraulic back-check, adjustable close speed, and adjustable latch speed. Provide closers with delayed action where a hold-open mechanism is not required. Floor closers shall be multi-sized. Single acting floor closers shall also have built in dead stop. Where required, provide closers with special cement cases appropriate for shallow deck installation or where concrete joint lines run through the floor blockout. At offset-hung doors installed in deep reveals, provide special closer arm and spindle to allow for installation. Where stone or terrazzo is applied over the floor closer case, provide closer without floor plate and with extended spindle (length as required) and special cover pan (depth as required) to allow closer to be accessed without damaging the material applied over the closer. Pivots for non-labeled doors shall be cast, forged or extruded brass or bronze.

- B. Where floor closer appears in hardware set provide the following as applicable.
 - 1. Double Acting Floor Closers: Type C06012.
 - Single Acting Floor Closer: Type C06021 (center pivoted). (Intermediate pivot is not required).
 - 3. Single Acting Floor Closers: Type C06041 (offset pivoted).
 - Single Acting Floor Closer for Labeled Fire Doors: Type C06051 (offset pivoted).
 - 5. Single Acting Floor Closers For Lead Lined Doors: Type C06071 (offset pivoted).

2.6 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use expansion shields for mounting door stops.
- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 71 00-8

05-01-22

Bancroft Architects + Engineers

D. Provide floor stops (Type L02141 or L02161) in office areas; Type L02121 x 3 screws into floor elsewhere. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.

05 - 01 - 22

- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.
- F. Provide stop Type L02011, as applicable for exterior doors. At outswing doors where stop can be installed in concrete, provide stop mated to concrete anchor set in 76mm (3-inch) core-drilled hole and filled with quick-setting cement.
- G. Omit stops where floor mounted door holders are required and where automatic operated doors occur.
- H. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging.
- I. Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used.
- J. Provide overhead surface applied stop Type C02541, ANSI A156.8 on patient toilet doors in bedrooms where toilet door could come in contact with the bedroom door.
- K. Provide door stops on doors where combination closer magnetic holders are specified, except where wall stops cannot be used or where floor stops cannot be installed within 4-inches of the wall.
- L. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used).

2.7 OVERHEAD DOOR STOPS AND HOLDERS

2.8 FLOOR DOOR HOLDERS

A. Conform to ANSI Standard A156.16. Provide extension strikes for Types L01301 and L01311 holders where necessary.

2.9 LOCKS AND LATCHES

A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Lock cylinders shall have not less than seven pins. Cylinders for all locksets shall be removable core type. // Cylinders shall be furnished with construction removable cores

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

05-01-22 and construction master keys.Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4 inch) throw, unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying device or construction core to allow opening and closing during construction and prior to the installation of final cores.

- B. In addition to above requirements, locks and latches shall comply with following requirements:
 - 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets, except on designated doors in Psychiatric (Mental Health) areas, shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching [_____]. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide non-ferrous mortise lock case.

2.10 PUSH-BUTTON COMBINATION LOCKS

2.11 ELECTROMAGNETIC LOCKS

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

05-01-22

2.12 ELECTRIC STRIKES

2.13 KEYS

A. Stamp all keys with change number and key set symbol. Furnish keys in quantities as follows:

Locks/Keys	Quantity			
Cylinder locks	2 keys each			
Cylinder lock change key blanks	100 each different key way			
Master-keyed sets	6 keys each			
Grand Master sets	6 keys each			
Great Grand Master set	5 keys			
Control key	2 keys			

2.14 KEY CABINET

2.15 ARMOR PLATES, KICK PLATES, MOP PLATES AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates // and door edging // as specified below:
 - 1. Kick plates, mop plates and armor plates of metal, Type J100 series.
 - 2. Provide kick plates and mop plates where specified. Kick plates shall
 - be 254 mm (10 inches) or 305 mm (12 inches) high. Mop plates shall be 152 mm (6 inches) high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick and mop plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick and mop plates to within 6 mm (1/4 inch) of each edge of doors. Kick and mop plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames.
 - 3. Kick plates and/or mop plates are not required on following door sides:
 - a. Armor plate side of doors;
 - b. Exterior side of exterior doors;
 - c. Closet side of closet doors;
 - d. Both sides of aluminum entrance doors.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

4. Armor plates for doors are listed under Article "Hardware Sets". Armor plates shall be thickness as noted in the hardware set, 875 mm (35 inches) high and 38 mm (1-1/2 inches) less than width of doors, except on pairs of metal doors. Provide armor plates beveled on all 4 edges (B4E). Plates on pairs of metal doors shall be 25 mm (1 inch) less than width of each door. Where top of intermediate rail of door is less than 875 mm (35 inches) from door bottom, extend armor plates to within 13 mm (1/2 inch) of top of intermediate rail. On doors equipped with panic devices, extend armor plates to within 13 mm (1/2 inch) of panic bolt push bar.

05 - 01 - 22

- 5. Where louver or grille occurs in lower portion of doors, substitute stretcher plate and kick plate in place of armor plate. Size of stretcher plate and kick plate shall be 254 mm (10 inches) high.
- 6. Provide stainless steel edge guards where so specified at wood doors. Provide mortised type instead of surface type except where door construction and/or ratings will not allow. Provide edge guards of bevel and thickness to match wood door. Provide edge guards with factory cut-outs for door hardware that must be installed through or extend through the edge guard. Provide full-height edge guards except where door rating does not allow; in such cases, provide edge guards to height of bottom of typical lockset armor front. Forward edge guards to wood door manufacturer for factory installation on doors.

2.16 EXIT DEVICES

2.17 FLUSH BOLTS (LEVER EXTENSION)

- A. Conform to ANSI A156.16. Flush bolts shall be Type L24081 unless otherwise specified. Furnish proper dustproof strikes conforming to ANSI A156.16, for flush bolts required on lower part of doors.
- B. Lever extension manual flush bolts shall only be used at non-fire-rated pairs for rooms only accessed by maintenance personnel.
- C. Face plates for cylindrical strikes shall be rectangular and not less than 25 mm by 63 mm (1 inch by 2-1/2 inches).
- D. Friction-fit cylindrical dustproof strikes with circular face plate may be used only where metal thresholds occur.
- E. Provide extension rods for top bolt where door height exceeds 2184 mm (7 feet 2 inches).

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

08 71 00-12

Bancroft Architects + Engineers

05-01-22

2.18 FLUSH BOLTS (AUTOMATIC)

- A. Conform to ANSI A156.3. Dimension of flush bolts shall conform to ANSI A115. Bolts shall conform to Underwriters Laboratories, Inc., requirements for fire door hardware. Flush bolts shall automatically latch and unlatch. Furnish dustproof strikes conforming to ANSI A156.16 for bottom flushbolt. Face plates for dustproof strike shall be rectangular and not less than 38 mm by 90 mm (1-1/2 by 3-1/2 inches).
- B. At interior doors, provide auto flush bolts less bottom bolt, unless otherwise specified, except at wood pairs with fire-rating greater than 20 minutes; provide fire pins as required by auto flush bolt and door fire labels.

2.19 LIGATURE RESISTANT DOOR ALARM:

2.20 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm CTC (6 inches CTC) length by 19 mm (3/4 inches) diameter minimum with plate Type J302, 90 mm by 381 mm (3-1/2 inches by 15 inches), unless otherwise specified. Provide pull with projection of 57.2 mm (2 1/4 inches) minimum and a clearance of 38.1 mm (1 1/2 inches) minimum. Cut plates of door pull plate for cylinders, or turn pieces where required.

2.21 PUSH PLATES

2.22 COMBINATION PUSH AND PULL PLATES

2.23 COORDINATORS

2.24 THRESHOLDS

- A. Conform to ANSI A156.21, mill finish extruded aluminum, except as otherwise specified. In existing construction, thresholds shall be installed in a bed of sealant with 4-20 stainless steel machine screws and expansion shields. In new construction, embed aluminum anchors coated with epoxy in concrete to secure thresholds. Furnish thresholds for the full width of the openings.
- B. Provide with miter returns where threshold extends more than 12 mm (0.5 inch) beyond face of frame.

Bancroft Architects + Engineers

05-01-22

2.25 AUTOMATIC DOOR BOTTOM SEAL AND RUBBER GASKET FOR LIGHT PROOF OR SOUND CONTROL DOORS

2.26 WEATHERSTRIPS (FOR EXTERIOR DOORS)

2.27 MISCELLANEOUS HARDWARE

A. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, lead-lined frames and frames for sound-resistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except double-acting doors. Provide 4 mutes or silencers for frames for each Dutch type door. Provide 2 mutes for each edge of sliding door which would contact door frame.

2.28 PADLOCKS FOR VARIOUS DOORS, GATES AND HATCHES

2.29 THERMOSTATIC TEMPERATURE CONTROL VALVE CABINETS

2.30 HINGED WIRE GUARDS (FOR WINDOWS, DOORS AND TRANSOMS) AND WIRE PARTITION DOORS

2.31 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --interior doors: 652 or 630.
 - 2. Pivots: Match door trim.
 - 3. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
 - 4. Thresholds: Mill finish aluminum.
 - 5. Cover plates for floor hinges and pivots: 630.
 - 6. Other primed steel hardware: 600.
- D. Hardware Finishes for Existing Buildings: U.S. Standard finishes shall match finishes of hardware in (similar) existing spaces.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

E. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

2.32 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal
652	Steel
626	Brass or bronze
630	Stainless steel

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA COR for approval.
- B. Hardware Heights from Finished Floor:
 - 1.Exit devices centerline of strike (where applicable) 1024 mm (40-5/16
 inches).
 - 2.Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
 - 3. Deadlocks centerline of strike 1219 mm (48 inches).
 - 4. Hospital arm pull 1168 mm (46 inches) to centerline of bottom supporting bracket.
 - 5. Centerline of door pulls to be 1016 mm (40 inches).
 - 6. Push plates and push-pull shall be 1270 mm (50 inches) to top of plate.
 - 7. Push-pull latch to be 1024 mm (40-5/16 inches) to centerline of strike.
 - 8. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

Bancroft Architects + Engineers

3.2 INSTALLATION

A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors..

B. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Hinges Required Per Door:

Door Description	Number butts
Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high	3 butts
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

- E. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.
- F. After locks have been installed; show in presence of COR that keys operate their respective locks in accordance with keying requirements. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06/02/2023

08 71 00-16

05-01-22

Bancroft Architects + Engineers

05-01-22 (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting list. Also a copy of the invoice shall be sent to the COR for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA Resident/Project Engineer that upon completion, installer has visited the Project and has accomplished the following:
 - 1.Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards. ELECTRIC HARDWARE ABBREVIATIONS LEGEND: ADO = Automatic Door Operator EMCH = Electro-Mechanical Closer-Holder MHO = Magnetic Hold-Open (wall- or floor-mounted)

C. INTERIOR SINGLE DOORS

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

08 71 00-17

Bancroft Architects + Engineers

05-01-22

HW-5G	
Each Door to Have:	NON-RATED
Hinges	Hager BB1279 4.5"x4.5" 5 Knuckle ball
	bearing US 26D HT
1 Storeroom Lock	F07 - Corbin ML2057
1 Kick Plate	J102
1 Floor Stop	L02121 x 3 FASTENERS
1 Threshold	J32300 x 57 MM WIDTH (2-1/4 INCHES)
1 Auto Door Bottom	R0Y346 - HEAVY DUTY
2 Sets Self-Adhesive Seals	R0Y154

HW-11C

Each Pair to Have:	RATED/NR
Hinges	Hager BB1279 4.5"x4.5" 5 Knuckle ball
	bearing US 26D HT
1 Set Auto Flush Bolts	TYPE 25 LESS BOTTOM BOLT
1 Storeroom Lock	F07 - Corbin ML2057
1 Coordinator	TYPE 21A
1 Overlapping Astragal with	R0Y634 x R0Y154 x THRU-BOLTS
Self-Adhesive Seal	C02011/C02021
2 Kick Plates	J102 (@ STORAGE ROOMS ONLY)
2 Floor Stops	L02121 x 3 FASTENERS
1 Threshold	J32300 x 57 MM WIDTH (2-1/4 INCHES)
2 Auto Door Bottoms	R0Y346 - HEAVY DUTY
2 Set Self-Adhesive Seals	R0Y154

- - - E N D - - -

DIVISION 09

Bancroft Architects + Engineers

01-01-21

SECTION 09 05 16 SUBSURFACE PREPARATION FOR FLOOR FINISHES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies subsurface preparation requirements for areas to
- B. receive the installation of applied and resinous flooring. This section includes removal of existing floor coverings, floor leveling and repair as required.

1.2 RELATED WORK

A. Section 07 92 00, JOINT SEALANTS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and TEST DATA.
- B. Written approval confirming product compatibility with subfloor material manufacturer and the flooring manufacturer
- C. Product Data:
- 1. Moisture remediation system
- 2. Underlayment Primer
- 3. Cementitious Self-Leveling Underlayment
- 4. Cementitious Trowel-Applied Underlayment (Not suitable for resinous floor finishes)
- D. Test Data:
- Moisture test and pH results performed by a qualified independent testing agency or warranty holding manufacturer's technical representative.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21 B. ASTM International (ASTM): D638-14(2014).....Standard Test Method for Tensile Properties of Plastics D4259-18(2019).....Standard Practice for Preparation of Concrete by Abrasion Prior to Coating Application. C109/C109M-20b(2020)....Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens 7234-19(2020).....Standard Test Method for Pull-Off Adhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers E96/E96M-16(2016).....Standard Test Methods for Water Vapor Transmission of Materials F710-1e1(2020).....Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring F1869-16a..... Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride F2170-19a(2020).....Standard Test Method for Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes C348-20(2020).....Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars C191-19(2020).....Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle

PART 2 - PRODUCTS

2.1 MOISTURE REMEDIATION COATING (NOT USED)

2.2

2.2 CEMENTITIOUS SELF-LEVELING UNDERLAYMENT

- A. System Descriptions:
- High performance self-leveling underlayment resurfacer. Single component, self-leveling, cementitious material designed for easy

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

application as an underlayment for all types of flooring materials. It is used for substrate repair and leveling.

- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up. Gypsum-based products are unacceptable.
- C. System Characteristics:
- 1. Wearing Surface: smooth
- 2. Thickness: Per architectural drawings, ranging from feathered edge to 1", per application. Applications greater than 1" require additional 3/8" aggregate to mix or as recommended by manufacturer.
- D. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- E. Compressive Strength: Minimum 4100 psi in 28 days in accordance with ASTM C109/C109M.
- F. Flexural Strength: Minimum 1000 psi in 28 days in accordance with ASTM C348
- G. Dry Time: Underlayment shall receive the application of moisture insensitive tile in 6 hours, floor coverings in 16 hours, and resinous flooring in 3-7 days.
- H. Primer: compatible and as recommended by manufacturer for use over intended substrate
- I. System Components: Manufacturer's standard components that are compatible with each other and as follows:
- 1. Primer:
 - a. Resin: copolymer
 - b. Formulation Description: single component ready to use.
 - c. Application Method: Squeegee and medium nap roller.
 - d. All puddles shall be removed, and material shall be allowed to dry, 1-2 hours at 70F/21C.
 - e. Number of Coats: (1) one.
- 2. Grout Resurfacing Base:
 - a. Formulation Description: Single component, cementitious selfleveling high-early and high-ultimate strength grout.
 - b. Application Method: colloidal mix pump, cam rake, spike roll.1) Thickness of Coats: Per architectural scope, 1" lifts.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

2) Number of Coats: More than one if needed.

c. Aggregates: for applications greater than linch, require additional 3/8" aggregate to mix.

J.

Property	Test	Value
Compressive Strength	ASTM C109/C109M	2,200 psi @ 24 hrs 3,000 psi @ 7 days
Initial set time Final Set time	ASTM C191	30-45 min. 1 to 1.5 hours
Bond Strength	ASTM D7234	100% bond to concrete failure

2.3 CEMENTITIOUS TROWEL-APPLIED UNDERLAYMENT (NOT SUITABLE FOR RESINOUS FLOOR FINISHES) (NOT USED)

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degreeC (60 degrees F), without interruption, for not less than 24 hoursbefore testing and not less than three days after testing.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation.
- C. Do not install materials when the temperatures of the substrate or materials are not within 60-85 degrees F/ 16-30 degrees C.

3.2 SURFACE PREPARATION

A. Existing concrete slabs with existing floor coverings:

- Conduct visual observation of existing floor covering for adhesion, water damage, alkaline deposits, and other defects.
- Remove existing floor covering and adhesives. Comply with local, state and federal regulations and the RFCI Recommended Work Practices for Removal of Resilient Floor Coverings, as applicable to the floor covering being removed.
- B. Concrete shall meet the requirements of ASTM F710 and be sound, solid, clean, and free of all oil, grease, dirt, curing compounds, and any substance that might act as a bond-breaker before

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

application. As required prepare slab by mechanical methods. No chemicals or solvents shall be used.

- C. General: Prepare and clean substrates according to flooring manufacturer's written instructions for substrate indicated.
- D. Prepare concrete substrates per ASTM D4259 as follows:
- 1. Dry abrasive blasting.
- 2. Wet abrasive blasting.
- 3. Vacuum-assisted abrasive blasting.
- 4. Centrifugal-shot abrasive blasting.
- 5. Comply with manufacturer's written instructions.
- E. Repair damaged and deteriorated concrete according to flooring manufacturer's written recommendations.
- F. Verify that concrete substrates are dry.
- G. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisture-vaporemission rate of per flooring manufactures formal and project specific written recommendation.
- H. Perform in situ probe test, ASTM F2170. Proceed with application only after substrates do not exceed a maximum potential equilibrium relative humidity per flooring manufacture's formal and project specific written recommendation.
- I. Provide a written report showing test placement and results.
- J. Prepare joints in accordance with Section 07 92 00, JOINT SEALANTS and material manufacturer's instructions.
- K. Alkalinity: Measure surface pH in accordance with procedures provided in ASTM F710 or as outlined by qualified testing agency or flooring manufacturer's technical representative.
- L. Tolerances: Subsurface shall meet the flatness and levelness tolerance specified on drawings or recommended by the floor finish manufacturer. Tolerance shall also not to exceed 1/4" deviation in 10'. As required, install underlayment to achieve required tolerance.
- M. Other Subsurface: For all other subsurface conditions, such as wood or metal, contact the floor finish or underlayment manufacturer, as appropriate, for proper preparation practices.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-21

3.3 MOISTURE REMEDIATION COATING (NOT USED)

3.4 CEMENTITOUS UNDERLAYMENT

- A. Install cementitious self-leveling underlayment as required to correct surface defects, address non-moving cracks or joints, provide a smooth surface for the installation of floor covering, or meet elevation requirements detailed on drawings.
- B. Mix and apply in accordance with manufacturer's instructions.

3.5 PROTECTION

A. Prior to the installation of the finish flooring, the surface of the underlayment should be protected from abuse by other trades by the use of plywood, tempered hardwood, or other suitable protection course

3.6 FIELD QUALITY CONTROL

A. Where specified, field sampling of products shall be conducted by a qualified, independent testing facility.

- - - E N D - - -

SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, plaster bases or other building boards.

1.2 RELATED WORK

- A. Support for wall mounted items: Section 05 50 00, METAL FABRICATIONS.
- B. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 51 00, ACOUSTICAL CEILINGS.

1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walk-on floors the underside of the walk-on floor is the underside of structure overhead.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Studs, runners and accessories.
 - 2. Hanger inserts.
 - 3. Channels (Rolled steel).
 - 4. Furring channels.
 - 5. Screws, clips and other fasteners.
- C. Shop Drawings:
 - 1. Typical ceiling suspension system.
 - Typical metal stud and furring construction system including details around openings and corner details.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 22 16 - 1

06-01-18

- 3. Typical shaft wall assembly
- 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.
- D. Test Results: Fire rating test designation, each fire rating required for each assembly.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C754.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society For Testing And Materials (ASTM)

A641-09	.Zinc-Coated (Galvanized) Carbon Steel Wire
A653/653M-11	.Specification for Steel Sheet, Zinc Coated
	(Galvanized) or Zinc-Iron Alloy-Coated
	(Galvannealed) by Hot-Dip Process.
C11-10	.Terminology Relating to Gypsum and Related
	Building Materials and Systems
C635-07	.Manufacture, Performance, and Testing of Metal
	Suspension System for Acoustical Tile and
	Lay-in Panel Ceilings
C636-08	.Installation of Metal Ceiling Suspension
	Systems for Acoustical Tile and Lay-in Panels
C645-09	.Non-Structural Steel Framing Members
C754-11	.Installation of Steel Framing Members to
	Receive Screw-Attached Gypsum Panel Products
C841-03(R2008)	.Installation of Interior Lathing and Furring
C954-10	.Steel Drill Screws for the Application of
	Gypsum Panel Products or Metal Plaster Bases to
	Steel Studs from 0.033 in. (0.84 mm) to 0.112 $$
	in. (2.84 mm) in Thickness
E580-11	.Application of Ceiling Suspension Systems for
	Acoustical Tile and Lay-in Panels in Areas
	Requiring Moderate Seismic Restraint.

PART 2 - PRODUCTS

7.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 22 16 - 2

06-01-18

2.1 PROTECTIVE COATING

A. Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G40 or equivalent.

2.2 STEEL STUDS AND RUNNERS (TRACK)

- A. ASTM C645, modified for thickness specified and sizes as shown.
 - 1. Use C 645 steel, 0.75 mm (0.0296-inch) minimum base-metal (30 mil).
 - 2. Runners same thickness as studs.
 - 3. Exception: Members that can show certified third-party testing with gypsum board in accordance with ICC ES AC86 (Approved May 2012) need not meet the minimum thickness limitation or minimum section properties set forth in ASTM C 645. The submission of an evaluation report is acceptable to show conformance to this requirement. Use C 645 steel, 0.48mm (0.019 inch) minimum base-metal (19 mil).
- B. Provide not less than two cutouts in web of each stud, approximately 300 mm (12 inches) from each end, and intermediate cutouts on approximately 600 mm (24-inch) centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 3600 mm (12 feet) or less in length shall be in one piece.
- E. Shaft Wall Framing:
 - 1. Conform to rated wall construction.
 - 2. C-H Studs or C-T Studs.
 - 3. E Studs.
 - 4. J Runners.
 - 5. Steel Jamb-Strut.

2.3 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. Resilient furring channels:
 - 1. Not less than 0.45 mm (0.0179-inch) thick bare metal.
 - 2. Semi-hat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to.
- C. "Z" Furring Channels:

1. Not less than 0.45 mm (0.0179-inch)-thick base metal, with 32 mm (1-1/4 inch) and 19 mm (3/4-inch) flanges.

2. Web furring depth to suit thickness of insulation.

D. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold rolled.

2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

- A. ASTM C754, except as otherwise specified.
- B. For fire rated construction: Type and size same as used in fire rating test.
- C. Fasteners for steel studs thicker than 0.84 mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.
- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items. Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinc-coated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used.
- F. Tie Wire and Hanger Wire:
 - 1. ASTM A641, soft temper, Class 1 coating.
 - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- G. Attachments for Wall Furring:
 - Manufacturers standard items fabricated from zinc-coated (galvanized) steel sheet.
 - For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 1 mm (0.0396-inch) thick galvanized steel with corrugated edges.
 - H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

06-01-18

2.5 SUSPENDED CEILING SYSTEM FOR GYPSUM BOARD (OPTION) (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

3.2 INSTALLING STUDS

- A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.
- B. Space studs not more than 610 mm (24 inches) on center.
- C. Cut studs 6 mm to 9 mm (1/4 to 3/8-inch) less than floor to underside of structure overhead when extended to underside of structure overhead.
- D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead.
- E. Extend studs to underside of structure overhead for fire, rated partitions, smoke partitions, shafts, and sound rated partitions and insulated exterior wall furring.
- G. Openings:
 - Frame jambs of openings in stud partitions and furring with two studs placed back-to-back or as shown.
 - Fasten back-to-back studs together with 9 mm (3/8-inch) long Type S pan head screws at not less than 600 mm (two feet) on center, staggered along webs.
 - 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75 mm (2 by 3 inches) screwed to each stud with two screws in each stud. Locate splice plates at 600 mm (24 inches) on center between runner tracks.
- H. Fastening Studs:
 - Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.

06-01-18

- Do not fasten studs to top runner track when studs extend to underside of structure overhead.
- I. Chase Wall Partitions:
 - 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
 - Use studs or runners as cross bracing not less than 63 mm (2-1/2 inches wide).
- J. Form building seismic or expansion joints with double studs back-toback spaced 75 mm (three inches) apart plus the width of the seismic or expansion joint.
- K. Form control joint, with double studs spaced 13 mm (1/2-inch) apart.

3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:
 - Framed with 63 mm (2-1/2 inch) or narrower studs, 600 mm (24 inches) on center.
 - Brace as specified in ASTM C754 for Wall Furring-Stud System or brace with sections or runners or studs placed horizontally at not less than three-foot vertical intervals on side without finish.
 - Securely fasten braces to each stud with two Type S pan head screws at each bearing.
- C. Direct attachment to masonry or concrete; rigid channels or "Z" channels:
 - Install rigid (hat section) furring channels at 600 mm (24 inches) on center, horizontally or vertically.
 - Install "Z" furring channels vertically spaced not more than 600 mm (24 inches) on center.
 - At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
 - Ends of spliced furring channels shall be nested not less than 200 mm (8 inches).
 - 5. Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 22 16 - 6

06-01-18

- Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100 mm (4 inches) of corner.
- D. Installing Wall Furring-Bracket System: Space furring channels not more than 400 mm (16 inches) on center.

3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

- A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction.
- B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs.

3.5 INSTALLING SHAFT WALL SYSTEM

- A. Conform to UL Design No. U438 for two-hour fire rating. Provide one hour fire rating Shaft wall where indicated in the Contract Drawings.
- B. Position J runners at floor and ceiling with the short leg toward finish side of wall. Securely attach runners to structural supports with power driven fasteners at both ends and 600 mm (24 inches) on center.
- C. After liner panels have been erected, cut C-H studs and E studs, from 9 mm (3/8-inch) to not more than 13 mm (1/2-inch) less than floor-to-ceiling height. Install C-H studs between liner panels with liner panels inserted in the groove.
- D. Install full-length steel E studs over shaft wall line at intersections, corners, hinged door jambs, columns, and both sides of closure panels.
- E. Suitably frame all openings to maintain structural support for wall:
 - Provide necessary liner fillers and shims to conform to label frame requirements.
 - 2. Frame openings cut within a liner panel with E studs around perimeter.

06-01-18

3. Frame openings with vertical E studs at jambs, horizontal J runner at head and sill.

3.6 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS

- A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings and for plaster ceilings or soffits.
 - Space framing at 600 mm (24-inch) centers for gypsum board anchorage.
- B. Existing concrete construction exposed or concrete on steel decking:
 - 1. Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required.
 - Install fasteners at approximate mid height of concrete beams or joists. Do not install in bottom of beams or joists.
 - C. Installing Ceiling Bracing System:
 - 1. Construct bracing of 38 mm (1-1/2 inch) channels for lengths up to 2400 mm (8 feet) and 50 mm (2 inch) channels for lengths over 2400 mm (8 feet) with ends bent to form surfaces for anchorage to carrying channels and overhead construction. Lap channels not less than 600 mm (2 feet) at midpoint back-to-back. Screw or bolt lap together with two fasteners.
 - Install bracing at an approximate 45-degree angle to carrying channels and structure overhead; secure as specified to structure overhead with two fasteners and to carrying channels with two fasteners or wire ties.

3.7 TOLERANCES

- A. Fastening surface for application of subsequent materials shall not vary more than 3 mm (1/8-inch) from the layout line.
- B. Plumb and align vertical members within 3 mm (1/8-inch.)
- C. Level or align ceilings within 3 mm (1/8-inch.)

- - - E N D - - -

04-01-20

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.
- C. Shop Drawings:
 - Typical gypsum board installation, showing corner details, edge trim details and the like.
 - 2. Typical sound rated assembly, showing treatment at perimeter of partitions and penetrations at gypsum board.
 - Typical fire rated assembly for fireproofing of walls and structural steel components, indicating details of construction same as that used in fire rating test.
- D. Samples:

04-01-20

- 1. Cornerbead.
- 2. Edge trim.
- 3. Control joints.
- E. Test Results:
 - 1. Fire rating test, each fire rating required for each assembly.
 - 2. Sound rating test.
- F. Certificates: Certify that gypsum board types, gypsum backing board types, cementitious backer units, and joint treating materials do not contain asbestos material.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM): C11-15.....Terminology Relating to Gypsum and Related Building Materials and Systems C475-15.....Joint Compound and Joint Tape for Finishing Gypsum Board C840-13..... Application and Finishing of Gypsum Board C919-12.....Sealants in Acoustical Applications C954-15.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Stud from 0.033 in. (0.84mm) to 0.112 in. (2.84mm) in thickness C1002-14.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs C1047-14.....Accessories for Gypsum Wallboard and Gypsum Veneer Base C1177-13.....Glass Mat Gypsum Substrate for Use as Sheathing C1178/C1178M-18.....Specification for Coated Glass Mat Water Resistant Backing Panel Contract No. 36C26319D0022

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

04-01-20

C1658-13.....Glass Mat Gypsum Panels

C1396-14.....Gypsum Board

- C. Underwriters Laboratories Inc. (UL): Latest Edition.....Fire Resistance Directory
- D. Inchcape Testing Services (ITS):
 Latest Editions.....Certification Listings

PART 2 - PRODUCTS

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise.
- B. Water Resistant Gypsum Backing Board: ASTM C1178, Type X, 16 mm (5/8 inch) thick.
- C. Paper facings shall contain 100 percent post-consumer recycled paper content.

2.2 GYPSUM SHEATHING BOARD

- A. ASTM C1396, Type X, water-resistant core, 16 mm (5/8 inch) thick.
- B. ASTM C1177, Type X.

2.3 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

04-01-20

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Smoke partitions.
 - c. Sound rated partitions.
 - d. Full height partitions shown (FHP).
 - e. Corridor partitions.
 - 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.
 - Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.
 - 3. At existing ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in locations which might be subject to moisture exposure during construction.
- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-20

- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
- G. Walls (Except Shaft Walls):
 - When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
 - When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
 - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
 - 6. For three-ply gypsum board assemblies, apply plies in same manner as for two-ply assemblies, except that heads of fasteners need only be driven flush with surface for first and second plies. Apply third ply of wallboard in same manner as second ply of two-ply assembly, except use fasteners of sufficient length enough to have the same penetration into framing members as required for two-ply assemblies.
 - No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
 - 8. Installing Two Layer Assembly Over Sound Deadening Board:
 - a. Apply face layer of wallboard vertically with joints staggered from joints in sound deadening board over framing members.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- and 400 mm (16 inches) on center in the field.
- 9. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000 mm (30 feet).
 - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:
 - Cut gypsum board for a space approximately 3 mm to 6 mm (1/8 to 1/4 inch) wide around partition perimeter.
 - Coordinate for application of caulking or sealants to space prior to taping and finishing.
 - 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - At both sides of expansion and control joints unless shown otherwise.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

04-01-20

- b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
- c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
- d. Where shown.

3.3 INSTALLING GYPSUM SHEATHING

- A. Install in accordance with ASTM C840, except as otherwise specified or shown.
- B. Use screws of sufficient length to secure sheathing to framing.
- C. Space screws 9 mm (3/8 inch) from ends and edges of sheathing and 200 mm (8 inches) on center. Space screws a maximum of 200 mm (8 inches) on center on intermediate framing members.
- D. Apply 600 mm by 2400 mm (2 foot by 8 foot) sheathing boards horizontally with tongue edge up.
- E. Apply 1200 mm by 2400 mm or 2700 mm (4 ft. by 8 ft. or 9 foot) gypsum sheathing boards vertically with edges over framing.

3.4 CAVITY SHAFT WALL (NOT USED)

3.5 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non-decorated smoke barrier, fire rated and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the smoke barrier, fire rated and sound rated construction. Sanding is not required of non-decorated surfaces.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 29 00 - 7

3.6 REPAIRS

04-01-20

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non-decorated surface to provide smoke tight construction, fire protection equivalent to the fire rated construction and/or STC equivalent to the sound rated construction.
- 3.7 UNACCESSIBLE CEILINGS (NOT USED)

- - - E N D - - -

01-01-21

SECTION 09 30 13 CERAMIC/PORCELAIN TILING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies interior ceramic, porcelain and quarry tile, marble thresholds and window stools, terrazzo divider strips, waterproofing membranes for thin-set applications, crack isolation membranes, and tile backer board.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements.
- B. Section 07 92 00, JOINT SEALANTS: Sealing of Joints.
- C. Section 09 06 00, SCHEDULE FOR FINISHES: See Finish Legend

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals as described below:
 - //Volatile organic compounds per volume as specified in PART
 2 PRODUCTS.
- C. Samples:
 - 1. Base tile, each type, each color, each size.
 - 2. Quarry tile, each type, color, and size.
 - 3. Porcelain tile, each type, color, patterns and size.
 - 4. Wall (or wainscot) tile, each color, size and pattern.
 - 5. Trim shapes, bullnose cap and cove including bullnose cap and base pieces at internal and external corners of vertical surfaces, each type, color, and size.
- D. Product Data:
 - Ceramic and porcelain tile, marked to show each type, size, and shape required.
 - 2. Chemical resistant mortar and grout (epoxy and furan).
 - 3. Cementitious backer unit.
 - 4. Dry-set portland cement mortar and grout.
 - 5. Divider strip.

6. Reinforcing tape. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- 7. Leveling compound.
- 8. Latex-portland cement mortar and grout.
- 9. Commercial portland cement grout.
- 10. Slip resistant tile.
- 11. Waterproofing isolation membrane.
- 12. Fasteners.
- E. Certification:
 - 1. Master grade certificate, ANSI A137.1.
 - Manufacturer's certificates indicating that the following materials comply with specification requirements:
 - a. Chemical resistant mortar and grout (epoxy and furan).
 - b. Modified epoxy emulsion.
 - c. Commercial portland cement grout.
 - d. Cementitious backer unit.
 - e. Dry-set portland cement mortar and grout.
 - f. Reinforcing tape.
 - g. Latex-portland cement mortar and grout.
 - h. Leveling compound.
 - i. Waterproof isolation membrane.
 - j. Factory back mounted tile documentation for suitability for application in wet area.
- F. Installer Qualifications:
 - 1. Submit letter stating installer's experience.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 QUALITY ASSURANCE

- A. Installers to be from a company specializing in performing installation of products specified and have a minimum of three (3) years' experience.
- B. Each type and color of tile to be provided from a single source.
- C. Each type and color of mortar, adhesive, and grout to be provided from the same source.

01-01-21

1.6 WARRANTY

A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI): A10.20-06(R2016).....Safe Operating Practices for Tile, Terrazzo and Marble Work A108/A118/A136.1:2019...Installation of Ceramic Tile A108.01-18.....Subsurfaces and Preparations by Other Trades A108.02-19..... Materials, Environmental, and Workmanship A108.1A-17.....Installation of Ceramic Tile in the Wet-Set Method with Portland Cement Mortar A108.1B-17.....Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with Dry-Set or Latex-Portland Cement Mortar A108.1C-17.....Contractors Option; Installation of Ceramic Tile in the Wet-Set method with Portland Cement Mortar or Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with Dry-Set or Latex-Portland Cement Mortar A108.4-09.....Ceramic Tile with Organic Adhesives or Water Cleanable Tile-Setting Epoxy Adhesive A108.5-10Ceramic Tile with Dry-Set Portland Cement Mortar or Latex-Portland Cement Mortar A108.6-10......Ceramic Tile with Chemical Resistant, Water Cleanable Tile-Setting and -Grouting Epoxy A108.8-10.....Ceramic Tile with Chemical Resistant Furan Resin Mortar and Grout A108.9-10.....Ceramic Tile with Modified Epoxy Emulsion Mortar/Grout A108.10-17.....Grout in Tilework

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 30 13 - 3

Bancroft Architects + Engineers

01-01-21 A108.11-18......Interior Installation of Cementitious Backer Unite A108.12-10.....Installation of Ceramic Tile with EGP (Exterior Glue Plywood) Latex-Portland Cement Mortar A108.13-16.....Load Bearing, Bonded, Waterproof Membranes for Thin-Set Ceramic Tile and Dimension Stone A108.14-10.....Paper-Faced Glass Mosaic Tile A108.15-19.....Alternate Method: Paper-Faced Glass Mosaic Tile A108.17-16.....Crack Isolation Membranes for Thin-Set Ceramic Tile and Dimension Stone A118.1-19.....Dry-Set Portland Cement Mortar A118.3-13.....Chemical Resistant, Water Cleanable Tile-Setting and -Grouting Epoxy and Water Cleanable Tile-Setting Epoxy Adhesive A118.4-19.....Modified Dry-Set Cement Mortar A118.5-16..... Chemical Resistant Furan Mortars and Grouts A118.6-19.....Standard Cement Grouts for Tile Installation Installation A118.8-16..... Modified Epoxy Emulsion Mortar/ Grout A118.9-19.....Cementitious Backer Units A118.10-14.....Load Bearing, Bonded, Waterproof Membranes for Thin-Set Ceramic Tile and Dimension Stone Installation A118.11-17.....EGP (Exterior Glue Plywood) Modified Dry-set Mortar A118.12-14.....Crack Isolation Membranes for Thin-Set Ceramic Tile and Dimension Stone Installation A118.13-14.....Bonded Sound Reduction Membranes for Thin-Set Ceramic Tile Installation A118.15-19......Improved Modified Dry-Set Cement Mortar A136.1-13.....Organic Adhesives for Installation of Ceramic Tile A137.1-17..... American National Standard Specifications for Ceramic Tile C. ASTM International (ASTM): Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

09 30 13 - 4

01-01-21 A666-15.....Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar A1064/A1064M-18a.....Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete C109/C109M-20b.....Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2 inch. or [50-mm] Cube Specimens) C241/C241M-15e1.....Abrasion Resistance of Stone Subjected to Foot Traffic C348-20.....Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars C627-18.....Evaluating Ceramic Floor Tile Installation Systems Using the Robinson-Type Floor Tester C954-18.....Steel Drill Screws for the Application of Gypsum Board on Metal Plaster Base to Steel Studs from 0.033 in (0.84 mm) to 0.112 in (2.84 mm) in thickness C979/C979M-16.....Pigments for Integrally Colored Concrete C1002-18.....Steel Self-Piercing Tapping Screws for the Application of Panel Products C1027-19..... Test Method for Determining Visible Abrasion Resistance of Glazed Ceramic Tile C1127/C1127M-15.....Standard Guide for Use of High Solids Content, Cold Liquid-Applied Elastomeric Waterproofing Membrane with an Integral Wearing Surface C1178/C1178M-18.....Standard Specification for Coated Glass Mat Water-Resistant Gypsum Backing Panel C1325-19.....Non-Asbestos Fiber-Mat Reinforced Cementitious Backer Units C1353/C1353M-20e1.....Abrasion Resistance of Dimension Stone Subjected to Foot Traffic Using a Rotary Platform, Double-Head Abraser D1204-14(2020).....Test Method for Linear Dimensional Changes of Nonrigid Thermoplastic Sheeting or Film at Elevated Temperature

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09 30 13 - 5

01-01-21

D2240-15e1..... Test Method for Rubber Property - Durometer Hardness D2497-07(2018).....Tolerances for Manufactured Organic-Base Filament Single Yarns D3045-2018..... Heat Aging of Plastics Without Load D4397-16.....Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications D5109-12 (Withdrawn2020).Standard Test Methods for Copper-Clad Thermosetting Laminates for Printed Wiring Boards (recommend deletion) D. Code of Federal Regulation (CFR): 40 CFR 59..... Determination of Volatile Matter Content, Water Content, Density Volume Solids, and Weight Solids of Surface Coating E. Marble Institute of America (MIA) / Building Stone Institute (BSI): Dimension Stone Design Manual VIII-2016 F. Tile Council of North America, Inc. (TCNA):

Handbook for Ceramic Tile Installation (2020)G. TCNA DCOF AcuTest-2012,Dynamic Coefficient of Friction Test

PART 2 - PRODUCTS

2.1 TILE

- A. Comply with ANSI A137.1, Standard Grade, except as modified:
 - 1. Inspection procedures listed under the Appendix of ANSI A137.1.
 - 2. Abrasion Resistance Classification:
 - a. Tested in accordance with values listed in Table 1, ASTM C1027.
 - b. Class V, 12000 revolutions for floors in Corridors, Kitchens, Storage including Refrigerated Rooms
 - 3. Slip Resistant Tile for Floors:
 - a. Coefficient of friction, when tested in accordance with ANSI A137.1 and measured per the TCNA DCOF AcuTest.
 - Equal to or greater than .42 for level interior tile floors that will be walked on when wet.
 - 4. Factory Blending: For tile with color variations, within the ranges selected during sample submittals blend tile in the factory and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09 30 13 - 6

01-01-21

package so tile units taken from one (1) package show the same range in colors as those taken from other packages and match approved samples.

- 5. Factory-Applied Temporary Protective Coating:
 - a. Protect exposed face surfaces (top surface) of tile against adherence of mortar and grout by pre-coating with a continuous film of hot applied petroleum paraffin wax.
 - b. Do not coat unexposed tile surfaces.
 - c. Pre-wax tiles set or grouted withepoxy
- B. Unglazed Quarry Tile: Nominal 13 mm (1/2 inch) thick, square edges.
- C. Glazed Wall Tile: Cushion edges, glazing.
- D. Trim Shapes:
 - 1. Conform to applicable requirements of adjoining floor and wall tile.
 - 2. Use trim shapes sizes conforming to size of adjoining field wall tile including existing spaces unless detailed on construction documents or specified otherwise.
 - 3. Internal and External Corners:
 - a. Square internal and external corner joints are not acceptable.
 - b. External corners including edges: Use bullnose shapes.
 - c. Internal corners: Use cove shapes.
 - d. Base to floor internal corners: Use special shapes providing integral cove vertical and horizontal joint.
 - e. Base to floor external corners: Use special shapes providing bullnose vertical edge with integral cove horizontal joint. Use stop at bottom of openings having bullnose return to wall.
 - f. Wall top edge internal corners: Use special shapes providing integral cove vertical joint with bullnose top edge.
 - g. Wall top edge external corners: Use special shapes providing bullnose vertical and horizontal joint edge.
 - h. For unglazed ceramic mosaic and glazed wall tile installed in portland cement mortar setting bed, use cove and bullnose shapes as applicable. When ceramic mosaic wall and base tile is required, use C Series cove and bullnose shapes.
- i. For unglazed ceramic mosaic and glazed wall tile installed in dry-set portland cement mortar, latex-portland cement mortar, and Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 30 13 - 7

01-01-21

organic adhesive (thin set methods), use cove and surface bullnose shapes as applicable.

j. For quarry tile work, use cove and bullnose shapes as applicable.

2.2 BACKER UNITS

- A. Cementitious Backer Units:
 - 1. Use in showers or wet areas.
 - 2. Conform to ASTM C1325; Type A.
 - 3. Use in maximum lengths available to minimize end to end butt joints.
- B. Glass Mat Water Resistant Backing Board:
 - 1. Use in showers or wet areas.
 - 2. Conform to ASTM C1178/C1178M.
 - 3. Use in maximum lengths available to minimize end to end butt joints.

2.3 JOINT MATERIALS FOR CEMENTITIOUS BACKER UNITS

- A. Reinforcing Tape: Vinyl coated woven glass fiber mesh tape, open weave, 50 mm (2 inches) wide. Tape with pressure sensitive adhesive backing will not be permitted.
- B. Tape Embedding Material: Latex-portland cement mortar complying with ANSI A108.01.
- C. Joint material, including reinforcing tape, and tape embedding material, are to be as specifically recommended by the backer unit manufacturer.

2.4 FASTENERS

- A. Screws for Cementitious Backer Units.
 - 1. Standard screws for gypsum board are not acceptable.
 - Minimum 11 mm (7/16 inch) diameter head, corrosion resistant coated, with washers.
 - 3. ASTM C954 for steel 1 mm (0.033 inch) thick.
 - 4. ASTM C1002 for steel framing less than 0.0329 inch thick.
- B. Washers: Galvanized steel, 13 mm (1/2 inch) minimum diameter.

2.5 SETTING MATERIALS OR BOND COATS

- A. Conform to TCNA Handbook for Ceramic Tile Installation.
- B. Portland Cement Mortar: ANSI A108.02.
- C. Latex-Portland Cement Mortar: ANSI A118.4.
 - 1. For wall applications, provide non-sagging, latex-portland cement mortar complying with ANSI A118.4.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- Prepackaged Dry-Mortar Mix: Factory-prepared mixture of portland cement; dry, redispersible, ethylene vinyl acetate additive; and other ingredients to which only water needs to be added at Project site.
- D. Dry-Set Portland Cement Mortar: ANSI A118.1. For wall applications, provide non-sagging, latex-portland cement mortar complying with ANSI A118.1.
- E. Chemical-Resistant Bond Coat:
 - 1. Epoxy Resin Type: ANSI A118.3.
 - 2. Furan Resin Type: ANSI A118.5.
- F. Waterproofing Isolation Membrane:
 - Sheet System TCNA F122-14 (on-ground concrete) and TCNA F122A-14 (above-ground concrete).
 - Composite sheet consisting of ASTM D5109, Type II, Grade I Chlorinated Polyethylene (CM) sheet reinforced on both sides with a non-woven polyester fiber.
 - 3. Designed for use in wet areas as an isolation and positive waterproofing membranes for thin-set bonding of sheet to substrate and thin-set bonding of ceramic and porcelain tile or marble to sheet. Suited for both horizontal and vertical applications.
 - 4. Conform to the following additional physical properties:

Property	Units	Results	Test Method
Hardness Shore A	Points	70-80	ASTM D2240 (10 Second Reading)
Shrinkage	Percent	5 maximum	ASTM D1204
Brittleness		No crack remains flexible at temperature -37 degrees C (-35 degrees F)	ASTM D2497 13 mm (1/2-inch) Mandrel Bend
Retention of Properties after Heat Aging	Percent of original	80 Tensile 80 Breaking 80 Elongation	ASTM D3045, 90 degrees C (194 degrees F) for 168 hours

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- 5. Manufacturer's standard sheet size with prefabricated or preformed inside and outside corners.
- Sheet manufacturer's solvent welding liquid or xylene and edge sealant.

2.6 GROUTING MATERIALS

A. Coloring Pigments:

- Pure mineral pigments, lime proof and nonfading, complying with ASTM C979/C979M.
- 2. Coloring pigments may only be added to grout by the manufacturer.
- 3. Job colored grout is not acceptable.
- 4. Use is required in Commercial Portland Cement Grout, Dry-Set Grout, and Latex-Portland Cement Grout.
- B. Water-Cleanable Epoxy Grout: ANSI A118.3, with a VOC content of 65 g/L or less when calculated according to 40 CFR 59 (EPA Method 24) .
 - Provide product capable of withstanding continuous and intermittent exposure to temperatures of up to 60 and 100 degrees C (140 and 212 degrees F), respectively, and certified by manufacturer for intended use.

2.7 PATCHING AND LEVELING COMPOUND

- A. Portland cement base, polymer-modified, self-leveling compound, manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Provide a patching and leveling compound with the following minimum physical properties:
 - 1. Compressive strength 25 MPa (3500 psig) per ASTM C109/C109M.
 - 2. Flexural strength 7 MPa (1000 psig) per ASTM C348 (28 day value).
 - 3. Tensile strength 4.1 MPa (600 psi) per ANSI 118.7.
 - 4. Density 1.9.
- C. Capable of being applied in layers up to 38 mm (1-1/2 inches) thick without fillers and up to 101 mm (4 inches) thick with fillers, being brought to a feather edge, and being trowelled to a smooth finish.
- D. Primers, fillers, and reinforcement as required by manufacturer for application and substrate condition.
- E. Ready for use in 48 hours after application.

01-01-21

2.8 MARBLE (NOT USED)

2.9 METAL DIVIDER STRIPS

- A. Terrazzo type divider strips.
- B. Heavy top type strip with 5 mm (3/16 inch) wide top and 38 mm $(1 \ 1/2 \text{ inch})$ long leg. Height to match tile and setting-bed thickness.
- C. Embedded leg perforated and deformed for keying to mortar.
- D. stainless-steel, ASTM A666, 300 Series exposed-edge material.

2.10 WATER

A. Clean, potable and free from salts and other injurious elements to mortar and grout materials.

2.11 CLEANING COMPOUNDS

- A. Specifically designed for cleaning masonry and concrete and which will not prevent bond of subsequent tile setting materials including patching and leveling compounds and elastomeric waterproofing membrane and coat.
- B. Materials containing acid or caustic Material are not acceptable.

2.12 FLOOR MORTAR BED REINFORCING

A. ASTM A1064/A1064M welded wire fabric without backing, MW3 x MW3 (2 x 2-W0.5 x W0.5).

2.13 POLYETHYLENE SHEET

- A. Polyethylene sheet conforming to ASTM D4397.
- B. Nominal thickness: 0.15 mm (6 mils).

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degrees C (60 degrees F), without interruption, for not less than 24 hours before installation and not less than three (3) days after installation.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation and ANSI Specifications for installation.
- C. Do not install tile when the temperature is above 38 degrees C (100 degrees F).

01-01-21

- D. Do not install materials when the temperature of the substrate is below 16 degrees C (60 degrees F).
- E. Do not allow temperature to fall below 10 degrees C (50 degrees F) after third day of completion of tile work.

3.2 ALLOWABLE TOLERANCE

- A. Variation in plane of sub-floor, including concrete fills leveling compounds and mortar beds:
 - Not more than 6 mm in 3048 mm (1/4 inch in 10 feet) from required elevation where portland cement mortar setting bed is used.
 - Not more than 3 mm in 3048 mm (1/8 inch in 10 feet) where dry-set portland cement, and latex-portland cement mortar setting beds and chemical-resistant bond coats are used.
- B. Variation in Plane of Wall Surfaces:
 - 1. Not more than 6 mm in 2438 mm (1/4 inch in 8 feet) from required plane where portland cement mortar setting bed is used.
 - Not more than 3 mm in 2438 mm (1/8 inch in 8 feet) where dry-set or latex-portland cement mortar or organic adhesive setting materials is used.

3.3 SURFACE PREPARATION

- A. Patching and Leveling:
 - Mix and apply patching and leveling compound in accordance with manufacturer's instructions.
 - 2. Fill holes and cracks and align concrete floors that are out of required plane with patching and leveling compound.
 - a. Thickness of compound as required to bring finish tile system to elevation shown on construction documents.
 - b. Float finish except finish smooth for elastomeric waterproofing.
 - c. At substrate expansion, isolation, and other moving joints, allow joint of same width to continue through underlayment.
 - 3. Apply patching and leveling compound to concrete and masonry wall surfaces that are out of required plane.
 - Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.

01-01-21

- B. Mortar Bed for Slopes to Drains:
 - Slope compound to drain where drains are shown on construction documents.
 - Install mortar bed in depressed slab sloped to drains not less than
 3.2 mm in 305 mm (1/8 inch per foot).
 - 3. Allow not less than 50 mm (2 inch) depression at edge of depressed slab.
 - 4. Screed for slope to drain and float finish.
 - 5. Cure mortar bed for not less than seven (7) days. Do not use curing compounds or coatings.
 - Perform flood test to verify mortar bed slopes to drain before installing tile. Contracting Officer Representative (COR) to be present during flood test.
- C. Additional preparation of concrete floors for tile set with epoxy, or furan-resin is to be in accordance with the manufacturer's printed instructions.
- D. Cleavage Membrane:
 - Install polythene sheet as cleavage membrane in depressed slab when waterproof membrane is not scheduled or indicated.
 - 2. Turn up at edge of depressed floor slab to top of floor.
- E. Walls:
 - 1. In showers or other wet areas cover studs with polyethylene sheet.
 - Apply patching and leveling compound to concrete and masonry surfaces that are out of required plane.
 - Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
 - 4. Apply metal lath to framing in accordance with ANSI A108.1:
 - a. Use fasteners specified in paragraph "Fasteners." Use washers when lath opening is larger than screw head.
 - b. Apply scratch and leveling coats to metal lath in accordance with ANSI A108.1C.
 - c. Total thickness of scratch and leveling coats:
 - Apply 9 mm to 16 mm (3/8 inch to 5/8 inch) thick over solid backing.

01-01-21

- 16 mm to 19 mm (5/8 to 3/4 inch) thick on metal lath over studs.
- Where wainscots are required to finish flush with wall surface above, adjust thickness required for flush finish.
- d. Apply scratch and leveling coats more than 19 mm (3/4 inch) thick in two (2) coats.

F. Existing Floors and Walls:

- Remove existing composition floor finishes and adhesive. Prepare surface by grinding, chipping, self-contained power blast cleaning or other suitable mechanical methods to completely expose uncontaminated concrete or masonry surfaces. Follow safety requirements of ANSI A10.20.
- Remove existing concrete fill or topping to structural slab. Clean and level the substrate for new setting bed and waterproof membrane or cleavage membrane.
- 3. Where new tile bases are required to finish flush with plaster above or where they are extensions of similar bases in conjunction with existing floor tiles, cut channel in floor slab and expose rough wall construction sufficiently to accommodate new tile base and setting material.

3.4 CEMENTITIOUS BACKER UNITS

- A. Remove polyethylene wrapping from cementitious backer units and separate to allow for air circulation. Allow moisture content of backer units to dry down to a maximum of 35 percent before applying joint treatment and tile.
- B. Install in accordance with ANSI A118.9 except as specified otherwise.
- C. Install units horizontally or vertically to minimize joints with end joints over framing members. Units with rounded edges; face rounded edge away from studs to form a "V" joint for joint treatment.
- D. Secure cementitious backer units to each framing member with screws spaced not more than 203 mm (8 inches) on center and not closer than 13 mm (1/2 inch) from the edge of the backer unit or as recommended by backer unit manufacturer. Install screws so that the screw heads are flush with the surface of the backer unit.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- E. Where backer unit joins shower pans or waterproofing, lap backer unit over turned up waterproof system. Install fasteners only through top one-inch of turned up waterproof systems.
- F. Do not install joint treatment for seven (7) days after installation of cementitious backer unit.
- G. Joint Treatment:
 - Fill horizontal and vertical joints and corners with latex-portland cement mortar. Apply fiberglass tape over joints and corners and embed with same mortar.
 - Leave 6 mm (1/4 inch) space for sealant at lips of tubs, sinks, or other plumbing receptors.

3.5 GLASS MAT WATER-RESISTANT BACKING BOARD

A. Install in accordance with manufacturer's instructions. TCNA Systems W245-1.

B. Treat joints with tape and latex-portland cement mortar or adhesive. //

3.6 MARBLE (NOT USED)

3.7 METAL DIVIDER STRIPS

- A. Install metal divider strips in floor joints between ceramic and quarry tile floors and between tile floors and adjacent flooring of other materials where the finish floors are flush unless shown otherwise on construction documents.
- B. Set divider strip in mortar bed to line and level centered under doors or in openings.

3.8 CERAMIC TILE - GENERAL

- A. Comply with ANSI A108/A118/A136 series of tile installation standards applicable to methods of installation and TCNA Installation Guidelines.
- B. Installing Mortar Beds for Floors:
 - Install mortar bed in a manner that does not damage cleavage or waterproof membrane; 32 mm (1-1/2 inch) minimum thickness.
 - 2. Install floor mortar bed reinforcing centered in mortar fill.
 - Screed finish to level plane or slope to drains shown on construction documents, float finish.
 - For thin set systems cure mortar bed not less than seven (7) days.
 Do not use curing compounds or coatings.
 - 5. For tile set with portland cement paste over plastic mortar bed coordinate to set tile before mortar bed sets.

01-01-21

- C. Setting Beds or Bond Coats:
 - Where recessed or depressed floor slabs are filled with portland cement mortar bed, set ceramic mosaic floor tile in either portland cement paste over plastic mortar bed or latex-portland cement mortar over cured mortar bed except as specified otherwise, ANSI A108-1C, TCNA System F121-14 or F111-14.
 - 2. Use quarry tile in chemical-resistant bond coat.
 - a. Portland cement paste over plastic mortar bed. ANSI A108.1A.
 - b. Dry-set portland cement mortar over cured mortar bed. ANSI A108.1B.
 - Set floor tile in elastomeric bond coat over elastomeric membrane per ANSI 108.13, TCNA System F122-14 where indicated on construction documents.
 - 4. Set wall tile installed over concrete backer board in latex-portland cement mortar, ANSI A108.1B.
 - 5. Set tile installed over gypsum board and gypsum plaster in organic adhesive, ANSI A108.1, TCNA System W242-14.
 - Set trim shapes in same material specified for setting adjoining tile.
- D. Workmanship:
 - Lay out tile work so that no tile less than one-half full size is used. Make all cuts on the outer edge of the field. Align new tile work scheduled for existing spaces to the existing tile work unless specified otherwise.
 - Set tile firmly in place with finish surfaces in true planes. Align tile flush with adjacent tile unless shown otherwise on construction documents.
 - 3. Form intersections and returns accurately.
 - 4. Cut and drill tile neatly without marring surface.
 - 5. Cut edges of tile abutting penetrations, finish, or built-in items:
 - a. Fit tile closely around electrical outlets, piping, fixtures and fittings, so that plates, escutcheons, collars and flanges will overlap cut edge of tile.

01-01-21

- b. Seal tile joints water tight as specified in Section 07 92 00, JOINT SEALANTS, around electrical outlets, piping fixtures and fittings before cover plates and escutcheons are set in place.
- Completed work is to be free from hollow sounding areas and loose, cracked or defective tile.
- 7. Remove and reset tiles that are out of plane or misaligned.
- 8. Floors:
 - a. Extend floor tile beneath casework and equipment, except those units mounted in wall recesses.
 - b. Align finish surface of new tile work flush with other and existing adjoining floor finish where indicated in construction documents.
 - c. In areas where floor drains occur, slope tile to drains.
 - d. Push and vibrate tiles over 203 mm (8 inches) square to achieve full support of bond coat.
- 9. Walls:
 - a. Cover walls and partitions, including pilasters, furred areas, and freestanding columns from floor to ceiling, or from floor to nominal wainscot heights as indicated in construction documents with tile.
 - b. Finish reveals of openings with tile, except where other finish materials are indicated in construction documents.
 - c. At window openings, provide tile stools and reveals.
 - d. Finish wall surfaces behind and at sides of casework and equipment, except those units mounted in wall recesses, with same tile as scheduled for room proper.
- 10. Joints:
 - a. Keep all joints in line, straight, level, perpendicular and of even width unless shown otherwise on construction documents.
 - b. Make joints 2 mm (1/16 inch) wide for glazed wall tile and mosaic tile work.
 - c. Make joints in quarry tile work not less than 6 mm (1/4 inch) nor more than 9 mm (3/8 inch) wide. Finish joints flush with surface of tile.
 - d. Make joints in paver tile, porcelain type; maximum 3 mm (1/8 inch) wide.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- 11. Back Buttering: For installations indicated below, obtain 100 percent mortar coverage by complying with applicable special requirements for back buttering of tile in referenced ANSI A108/A118/A136 series of tile installation standards:
 - a. Tile wall installations in wet areas, including showers, tub enclosures, laundries and swimming pools.
 - b. Tile installed with chemical-resistant mortars and grouts.
 - c. Tile wall installations composed of tiles 203 by 203 mm(8 by 8 inches) or larger.
 - d. Exterior tile wall installations.

3.9 CERAMIC TILE INSTALLED WITH PORTLAND CEMENT MORTAR

- A. Mortar Mixes for Floor, Wall and Base Tile: ANSI A108.1A. except specified otherwise.
- B. Installing Wall and Base Tile: ANSI A108.1A, except specified otherwise.
- C. Installing Floor Tile: ANSI A108.1A, except as specified otherwise. Slope mortar beds to floor drains at a minimum of 3 mm in 305 mm (1/8 inch per foot).

3.10 PORCELAIN TILE INSTALLED WITH LATEX PORTLAND CEMENT BONDING MORTAR

A. Due to the denseness of porcelain tile use latex portland cement bonding mortar that meets the requirements of ANSI A108.01. Mix bonding mortars in accordance with manufacturer's instructions. Provide liquid ratios and comply with dwell times during the placement of bonding mortar and tile.

3.11 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH DRY-SET PORTLAND CEMENT AND LATEX-PORTLAND CEMENT MORTAR (NOT USED)

3.12 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH ORGANIC ADHESIVE (NOT USED)

3.13 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH CHEMICAL-RESISTANT BOND COAT (NOT USED)

3.14 CERAMIC AND PORCELAIN TILE INSTALLED WITH ELASTOMERIC BOND COAT (NOT USED)

3.15 GROUTING

A. Grout Type and Location:

01-01-21

- Grout for glazed wall and base tile, paver tile and unglazed mosaic tile portland cement grout, latex-portland cement grout, dry-set grout, or commercial portland cement grout.
- 2. Grout for quarry tile floor and base:
 - a. Grout for Kitchens:
 - Chemical-resistant grout as specified and recommended by manufacturer of bond coat.
 - 2) Use only furan resin grout within 609 mm (2 feet) of ovens, steam kettles, water heaters, steam pipes, in rooms.
 - 3) Epoxy grout designed for equivalent heat resistance to furan resin grout may be used for furan resin grout.
- 3. Grout for tile of therapeutic pools: Portland cement grout.
- B. Workmanship:
 - 1. Install and cure grout in accordance with the applicable standard.
 - 2. Sand Portland Cement Grout: ANSI A108.10.
 - 3. Standard Cement Grout: ANSI A118.6.
 - 4. High Performance Grout: ANSI A118.7.
 - 5. Epoxy Grout: ANSI A108.6.
 - 6. Water-Cleanable Epoxy Grout: ANSI A118.3.
 - 7. Furan and Commercial Portland Cement Grout: ANSI A118.5 and in accordance with the manufacturer's printed instructions.

3.16 MOVEMENT JOINTS

- A. Prepare tile expansion, isolation, construction and contraction joints for installation of sealant. Refer to Section 07 92 00, JOINT SEALANTS.
- B. TCNA details EJ 171-14.
- C. At expansion joints, rake out joint full depth of tile and setting bed and mortar bed. Do not cut waterproof or isolation membrane.
- D. Rake out grout at joints between tile, at toe of base, not less than 6 mm (1/4 inch) deep.

3.17 CLEANING:

- A. Thoroughly sponge and wash tile. Polish glazed surfaces with clean dry cloths.
- B. Methods and materials used are not permitted to damage or impair appearance of tile surfaces.
- C. The use of acid or acid cleaners on glazed tile surfaces is prohibited.

01-01-21

D. Clean tile grouted with epoxy, furan and commercial portland cement grout and tile set in elastomeric bond coat as recommended by the manufacturer of the grout and bond coat.

3.18 PROTECTION

- A. Keep traffic off tile floor, until grout and setting material is fully set and cured.
- B. Where traffic occurs over tile floor is unavoidable, cover tile floor with not less than 9 mm (3/8 inch) thick plywood, wood particle board, or hardboard securely taped in place. Do not remove protective cover until time for final inspection. Clean tile of any tape, adhesive and stains.

3.19 TESTING FINISH FLOOR

- A. Test floors in accordance with ASTM C627 to show compliance with codes 1 through 10.
- B. Test kitchen and storage rooms.

- - - E N D - - -

12-01-18

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Acoustical units.
 - 2. Metal ceiling suspension system for acoustical ceilings.

1.2 RELATED REQUIREMENTS

- A. Adhesive VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Ceiling Suspension System: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. A641/A641M-09a(2014) Zinc-coated (Galvanized) Carbon Steel Wire.
 - A653/A653M-15e1 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process.
 - C423-09a Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method.
 - 4. C634-13 Terminology Relating to Environmental Acoustics.
 - C635/C635M-13a Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings.
 - C636/C636M-13 Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels.
 - 7. D1779-98(2011) Adhesive for Acoustical Materials.
 - 8. E84-15b Surface Burning Characteristics of Building Materials.
 - 9. E119-16 Fire Tests of Building Construction and Materials.
 - 10. E413-16 Classification for Rating Sound Insulation.
 - 11. E580/E580M-14 Installation of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Subject to Earthquake Ground Motions.
 - 12. E1264-14 Classification for Acoustical Ceiling Products.
- C. International Organization for Standardization (ISO):
 - 1. ISO 14644-1 Classification of Air Cleanliness.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 51 00 - 1

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Contractor.
 - c. Installer.
 - d. Manufacturer's field representative.
 - e. Other installers responsible for adjacent and intersecting work, including sprinkler, HVAC, and lighting installers.
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Terminations.
 - g. Transitions and connections to other work.
 - h. Inspecting and testing.
 - i. Other items affecting successful completion.
 - Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Ceiling suspension system indicating manufacturer recommendation for each application.
 - 3. Installation instructions.
 - 4. Warranty.
- D. Samples:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 12-01-18

 Acoustical units, 150 mm (6 inches) in size, each type, including units specified to match existing.

- a. Submit quantity required to show full color and texture range.
- 2. Suspension system, trim and molding, 300 mm (12 inches) long.
- 3. Colored markers for access service.
- 4. Approved samples may be incorporated into work.
- E. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Biobased Content:
 - a. Show type and quantity for each product.
 - b. Show volatile organic compound types and quantities.
- F. Certificates: Certify each product complies with specifications.
 - 1. Acoustical units, each type.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Manufacturer.
- H. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - Manufactured specified products with satisfactory service on five similar installations for minimum five years.

1.7 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight, conditioned facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

A. Environment:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 12-01-18

12-01-18

- Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum
 48 hours before installation.
- Work Area Ambient Conditions: HVAC systems are complete, operational, and maintaining facility design operating conditions continuously, beginning 48 hours before installation until Government occupancy.
- 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.10 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Ceiling System: Acoustical ceilings units on exposed grid suspension systems.

2.2 SYSTEM PERFORMANCE

- A. Design product complying with specified performance:
 - 1. Maximum Deflection: 1/360of span, maximum.
- B. Surface Burning Characteristics: When tested according to ASTM E84.
 - 1. Flame Spread Rating: 25 maximum.
 - 2. Smoke Developed Rating: 450 maximum.

2.3 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide acoustical units from one manufacturer.
 - 1. Provide each product exposed to view from one production run.
- C. Provide suspension system from same manufacturer.
- D. Sustainable Construction Requirements:
 - Mineral Base Recycled Content: 65 percent, total recycled content, minimum.
 - 2. Steel Recycled Content: 30 percent total recycled content, minimum.
 - 3. Biobased Content: 37 percent by weight biobased material, minimum.

- 4. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Non-flooring adhesives and sealants.

2.4 ACOUSTICAL UNITS

- A. General:
 - Ceiling Panel and Tile: ASTM E1264, bio-based content according to USDA Bio-Preferred Product requirements.
 - a. Mineral Fiber: 3.6 kg/sq. m (3/4 psf) weight, minimum.
 - 2. Classification: Provide type and form as follows:
 - a. Type III Units Mineral base with water-based painted finish maximum 10 g/l VOC; Form 2 - Water felted, minimum 16 mm (5/8 inch) thick.
 - b. Type IV Units Mineral base with membrane-faced overlay, Form 2
 Water felted, minimum 16 mm (5/8 inch) thick. Apply poly (vinyl) chloride over paint coat.
 - c. NRC (Noise Reduction Coefficient): ASTM C423, minimum 0.55 unless specified otherwise.
 - d. CAC (Ceiling Attenuation Class): ASTM E413, 40-44 range unless specified otherwise.
 - e. LR (Light Reflectance): Minimum 0.75.
 - Lay-in panels: Sizes as indicated on Drawings, with square edges reveal edges.
 - a. Basis of Design: USG 2110 Radar Basic Acoustical Panels (or VA approved equal).
 - b. Standard sizes:
 - 1) Grid System: 600 by 600 mm (24 by 24 inch).
 - Edge and Joint Detail: Square edges and joints as required to suit suspension and access system.

2.5 METAL SUSPENSION SYSTEM

- A. General: ASTM C635, heavy-duty system, except as otherwise specified.
 - 1. Suspension System: Provide the following:
 - a. Basis of Design: USG Donn DX (or VA approved equal).
 - b. Galvanized cold-rolled steel, bonderized.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 51 00 - 5

12-01-18

- Main and Cross Runner: Use same construction. Do not use lighter-duty sections for cross runners.
- B. Exposed Grid Suspension System: Support of lay-in panels.
 - 1. Grid Width: 22 mm (7/8 inch) minimum with8 mm (5/16 inch) minimum panel bearing surface.
 - 2. Molding: Fabricate from the same material with same exposed width and finish.
 - 3. Finish: Baked-on enamel flat texture finish.
 - a. Color: To match adjacent acoustical units unless specified identified.
- C. Carrying Channels Secondary Framing: Cold-rolled or hot-rolled steel, black asphaltic paint finish, rust free.
 - 1. Weight per 300 m (per thousand linear feet), minimum:

Size		Cold-rolled		Hot-rolled	
mm	inches	kg	pound	kg	pound
38	1-1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

- D. Anchors and Inserts: Provide anchors or inserts to support twice the loads imposed by hangers.
- E. Clips: Galvanized steel, designed to secure framing member in place.
- F. Tile Splines: ASTM C635.
- G. Wire: ASTM A641.
 - 1. Size:
 - a. Wire Hangers: Minimum diameter 2.68 mm (0.1055 inch).
 - b. Bracing Wires: Minimum diameter 3.43 mm (0.1350 inch).

2.6 ACCESSORIES

- A. Adhesives: Low pollutant-emitting, water based type recommended by adhered product manufacturer for each application.
- B. Perimeter Seal: Vinyl, polyethylene or polyurethane open cell sponge material, density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
 - Thickness: As required to fill voids between back of wall molding and finish wall.
 - 2. Size: Minimum 9 mm (3/8 inch) wide strip.

- C. Access Identification Markers: Colored markers with pressure sensitive adhesive on one side, paper or plastic, 6 to 9 mm (1/4 to 3/8 inch) diameter.
 - Color Code: Provide the following color markers for service identification:

Color	Service		
Red	Sprinkler System: Valves and Controls		
Green	Domestic Water: Valves and Controls		
Yellow	Chilled Water and Heating Water		
Orange	Ductwork: Fire Dampers		
Blue	Ductwork: Dampers and Controls		
Black	Gas: Laboratory, Medical, Air and Vacuum		

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing acoustical panels to permit new installation.
 - 1. Dispose of removed materials.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Applications:
 - Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. For new installations, layout acoustical units symmetrically, with minimum number of joints.
- C. Installation:
 - Install acoustic tiles after wet finishes have been installed and solvents have cured.

- Install lay-in acoustic panels in exposed grid with minimum 6 mm (1/4 inch) bearing at edges on supports.
 - a. Install tile to lay level and in full contact with exposed grid.
 - b. Replace cracked, broken, stained, dirty, or tile.
- 3. Markers:
 - Install color coded markers to identify the various concealed piping, mechanical, and plumbing systems.
 - b. Attach colored markers to exposed grid on opposite sides of the units providing access.
 - c. Attach marker on exposed ceiling surface of upward access acoustical unit.
- D. Touch up damaged factory finishes.
 - 1. Repair painted surfaces with touch up primer.

3.4 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General: Install according to ASTM C636.
 - Use direct or indirect hung suspension system or combination of both.
 - Support a maximum area of 1.48 sq. m (16 sq. ft.) of ceiling per hanger.
 - Prevent deflection in excess of 1/360 of span of cross runner and main runner.
 - Provide additional hangers located at each corner of support components.
 - 5. Provide minimum 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown.
 - 6. Provide main runners minimum 1200 mm (48 inches) in length.
 - Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Direct Hung Suspension System: ASTM C635.
 - Support main runners by hanger wires attached directly to the structure overhead.
 - Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

12-01-18

12-01-18

- C. Anchorage to Structure:
 - 1. Concrete:
 - a. Install hanger inserts and wire loops required for support of hanger wire. Install hanger wires with looped ends through steel deck when steel deck does not have attachment device.
 - b. Use eye pins or threaded studs with screw-on eyes in existing or already placed concrete structures to support hanger wire.
 Install in sides of concrete beams or joists at mid height.
 - 2. Steel:
 - a. Install carrying channels for attachment of hanger wires.
 - Size and space carrying channels to support load within performance limit.
 - Attach hangers to steel carrying channels, spaced four feet on center, unless area is supported or deflection exceeds the amount specified.
 - Attach carrying channels to the bottom flange of steel beams spaced not 1200 mm (4 feet) on center before fireproofing is installed. Weld or use steel clips for beam attachment.
 - c. Attach hangers to bottom chord of bar joists or to carrying channels installed between the bar joists when hanger spacing prevents anchorage to joist. Rest carrying channels on top of the bottom chord of the bar joists, and securely wire tie or clip to joist.
- D. Indirect Hung Suspension System: ASTM C635.
 - Space carrying channels for indirect hung suspension system maximum 1200 mm (4 feet) on center. Space hangers for carrying channels maximum 2400 mm (8 feet) on center or for carrying channels less than 1200 mm (4 feet) or center so as to insure that specified requirements are not exceeded.
 - Support main runners by specially designed clips attached to carrying channels.
- E. Seismic Ceiling Bracing System:
 - 1. Install according to ASTM E580.
 - Connect bracing wires to structure above as specified for anchorage to structure and to main runner or carrying channels of suspended ceiling at bottom.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

12-01-18

3.5 CEILING TREATMENT

- A. Moldings:
 - Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- B. Perimeter Seal:
 - 1. Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
 - 2. Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.
- C. Existing ceiling:
 - 1. Where extension of existing ceilings occurs, match existing.
 - 2. Comply with specifications for new acoustical units for new units required to match appearance of existing units.

3.6 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed surfaces. Remove contaminants and stains.

- - - E N D - - -

01-01-21

SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Resilient base (RB) adhered to interior walls and partitions.

1.2 RELATED REQUIREMENTS (NOT USED)

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. F1344-15 Rubber Floor Tile.
 - 2. F1859-14 Rubber Sheet Floor Covering without Backing.
 - 3. F1860-14 Rubber Sheet Floor Covering with Backing.
 - 4. F1861-08(2012)e1 Resilient Wall Base.
 - 5. D4259-88(2012) Abrading Concrete.
- C. Federal Specifications (Fed. Spec.):
 - 1. RR-T-650E Treads, Metallic and Non-Metallic, Skid-Resistant.
- D. International Concrete Repair Institute (ICRI):
 - 310.2R-13 Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, and Polymer Overlays.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Adhesives and primers indicating manufacturer's recommendation for each application.
 - 3. Installation instructions.
- C. Samples:
 - 1. Resilient Base: 150 mm (6 inches) long, each type and color.
- D. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Low Pollutant-Emitting Materials:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

- a. Show volatile organic compound types and quantities.
- E. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage when handling and during construction operations.

1.7 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum
 48 hours before installation.
 - Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
 - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PRODUCTS

- A. Basis of Design: REFER TO ROOM FINISH LEGEND as part of the drawings.
- B. Provide each product from one manufacturer and from one production run.
- C. Sustainable Construction Requirements:
 - Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Flooring Adhesives and Sealants.

2.2 RESILIENT BASE

- A. Resilient Base: 3 mm (1/8 inch) thick, 100 mm (4 inches) high.
 - 1. Type: Vinyl; use one type throughout.
 - 2. ASTM F1861, Type TV thermoplastic vinyl, Group 2 layered.
- B. Applications:
 - 1. Style B Cove.
- 2.3 RESILIENT STAIR TREADS (NOT USED)
- 2.4 SHEET RUBBER FLOORING (NOT USED)
- 2.5 PRIMER (FOR CONCRETE FLOORS (NOT USED)
- 2.6 LEVELING COMPOUND (FOR CONCRETE FLOORS) (NOT USED)

2.7 ADHESIVES

A. Adhesives: Low pollutant-emitting, water-based type recommended by adhered product manufacturer for each application.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing base to permit new installation.
 - 1. Dispose of removed materials.
- D. Correct substrate deficiencies.
 - 1. Fill cracks, pits, and depressions with leveling compound.
 - 2. Remove protrusions; grind high spots.
 - Apply leveling compound to achieve 3 mm (1/8 inch) in 3 m (10 feet) maximum surface variation.
- E. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
 - 1. Mechanically clean concrete floor substrate according to ASTM D4259.
 - 2. Surface Profile: ICRI Guideline No. 310.2R.
- F. Allow substrate to dry and cure.
- G. Perform flooring manufacturer's recommended bond, substrate moisture content, and pH tests.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

3.2 INSTALLATION GENERAL

- A. Install products according to manufacturer's instructions.
 - 1. When instructions deviate from specifications, submit proposed resolution for Contracting Officer consideration.

3.3 RESILIENT BASE INSTALLATION

- A. Applications:
 - 1. Install resilient base in rooms scheduled on Drawings.
 - 2. Install resilient base on curb supported fixed equipment.
 - Extend resilient base into closets, alcoves, and cabinet knee spaces, and around columns within scheduled room.
- B. Lay out resilient base with minimum number of joints.
 - 1. Length: 600 mm (24 inches) minimum, each piece.
 - Locate joints 150 mm (6 inches) minimum from corners and intersection of adjacent materials.

C. Installation:

- Apply adhesive uniformly for full contact between resilient base and substrate.
- 2. Set resilient base with hairline butted joints aligned along top edge.
- D. Factory form corners and end stops.
 - 1. V-groove back of outside corner.
 - 2. V-groove face of inside corner and notch cove for miter joint.
- E. Roll resilient base ensuring complete adhesion.

3.4 RESILIENT STAIR TREAD INSTALLATION (NOT USED)

3.5 SHEET RUBBER FLOORING INSTALLATION (NOT USED))

3.6 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed resilient base, surfaces. Remove contaminants and stains.1. Clean with mild detergent. Leave surfaces free of detergent residue.
- C. Polish exposed resilient base to gloss sheen.

3.7 PROTECTION

- A. Prohibit traffic on flooring 72 hours, minimum, after installation.
- B. Protect products from construction traffic and operations.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

01-01-21

- Cover flooring with reinforced kraft paper, and plywood or hardboard.
- Maintain protection until directed by Contracting Officer's Representative.
- C. Replace damaged products and re-clean.
 - Damaged Products include cut, gouged, scraped, torn, and unbonded products.

- - E N D - -

01-01-21

SECTION 09 91 00 PAINTING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the painting and finishing as shown on the construction documents and/or specified herein, including, but not limited to, the following:
 - 1. Prime coats which may be applied in shop under other sections.
 - 2. Prime painting unprimed surfaces to be painted under this Section.
 - Painting items furnished with a prime coat of paint, including touching up of or repairing of abraded, damaged or rusted prime coats applied by others.
 - 4. Painting ferrous metal (except stainless steel) exposed to view.
 - 5. Painting galvanized ferrous metals exposed to view.
 - 6. Painting gypsum drywall exposed to view.
 - Painting pipes, pipe coverings, conduit, ducts, insulation, hangers, supports and other mechanical and electrical items and equipment exposed to view.
 - 8. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.
 - Incidental painting and touching up as required to produce proper finish for painted surfaces, including touching up of factory finished items.
 - 10. Painting of any surface not specifically mentioned to be painted herein or on construction documents, but for which painting is obviously necessary to complete the job, or work which comes within the intent of these specifications, is to be included as though specified.

1.2 RELATED WORK

- A. Section 01 35 26, SAFETY REQUIREMENTS: Activity Hazard Analysis.
- B. Section 01 81 13, SUSTAINABLE CONSTUCTION REQUIREMENTS: Sustainable Design Requirements.
- C. Section 04 05 13, MASONRY MORTARING: Masonry Repairs.
- D. Section 04 05 16, MASONRY GROUTING: Masonry Repairs.
- E. Division 05 METALS: Shop prime painting of steel and ferrous metals.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 91 00 - 1

01-01-21

- F. Division 08 OPENINGS: Shop prime painting of steel and ferrous metals.
- G. Section 08 14 00, INTERIOR WOOD DOORS: Prefinished flush doors with transparent finishes.
- H. Division 21 FIRE SUPPRESSION: Shop prime painting of steel and ferrous metals.
- I. Division 22 PLUMBING: Shop prime painting of steel and ferrous metals.
- J. Division 23 HEATING; VENTILATION AND AIR-CONDITIONING: Shop prime painting of steel and ferrous metals.
- K. Division 26 ELECTRICAL: Shop prime painting of steel and ferrous metals.
- L. Division 27 COMMUNICATIONS: Shop prime painting of steel and ferrous metals.
- M. Division 28 ELECTRONIC SAFETY AND SECURITY: Shop prime painting of steel and ferrous metals.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals as described below:
 - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
- C. Painter qualifications.
- D. Manufacturer's Literature and Data:
 - 1. Before work is started, or sample panels are prepared, submit manufacturer's literature and technical data, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one (1) list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.
- E. Sample Panels:
 - After painters' materials have been approved and before work is started, submit sample panels showing each type of finish and color specified.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09 91 00 - 2

01-01-21

- 2. Panels to Show Color: Composition board, 100 x 250 mm (4 x 10 inch).
- 3. Panel to Show Transparent Finishes: Wood of same species and grain pattern as wood approved for use, 100 x 250 mm (4 x 10 inch face) minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 x 50 mm (2 x 2 inch) minimum or actual wood member to show complete finish.
- 4. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.
 - b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - c. Product type and color.
 - d. Name of project.
- 5. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat.
- F. Sample of identity markers if used.
- G. Manufacturers' Certificates indicating compliance with specified requirements:
 - Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. High temperature aluminum paint.
 - 3. Epoxy coating.
 - 4. Intumescent clear coating or fire-retardant paint.
 - 5. Plastic floor coating.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.

01-01-21

- 3. Specify Coat Types: Prime; body; finish; etc.
- C. Maintain space for storage, and handling of painting materials and equipment in a ventilated, neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 7 and 30 degrees C (45 and 85 degrees F).

1.5 QUALITY ASSURANCE

- A. Qualification of Painters: Use only qualified journeyman painters for the mixing and application of paint on exposed surfaces. Submit evidence that key personnel have successfully performed surface preparation and application of coating on a minimum of three (3) similar projects within the past three (3) years.
- B. Paint Coordination: Provide finish coats which are compatible with the prime paints used. Review other Sections of these specifications in which prime paints are to be provided to ensure compatibility of the total coatings system for the various substrates. Upon request from other subcontractors, furnish information on the characteristics of the finish materials proposed to be used, to ensure that compatible prime coats are used. Provide barrier coats over incompatible primers or remove and reprime as required. Notify the Contracting Officer Representative (COR) in writing of any anticipated problems using the coating systems as specified with substrates primed by others.

1.6 MOCK-UP PANEL NOT USED)

1.7 REGULATORY REQUIREMENTS

- A. Paint materials are to conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - Volatile Organic Compounds (VOC) Emissions Requirements: Field-applied paints and coatings that are inside the waterproofing system to not exceed limits of authorities having jurisdiction.
 - 2. Lead-Based Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 91 00 - 4

01-01-21

residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.

- c. Do not use coatings having a lead content over 0.06 percent by weight of non-volatile content.
- 3. Asbestos: Provide materials that do not contain asbestos.
- Chromate, Cadmium, Mercury, and Silica: Provide materials that do not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
- 5. Human Carcinogens: Provide materials that do not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints.

1.8 SAFETY AND HEALTH

- A. Apply paint materials using safety methods and equipment in accordance with the following:
 - Comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis (AHA) as specified in Section 01 35 26, SAFETY REQUIREMENTS. The AHA is to include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.
- B. Safety Methods Used During Paint Application: Comply with the requirements of SSPC PA Guide 10.
- C. Toxic Materials: To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:
 - The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.
 - 2. 29 CFR 1910.1000.
 - 3. ACHIH-BKLT and ACGHI-DOC, threshold limit values.

1.9 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2012....Threshold Limit Values (TLV) for Chemical

Substances and Physical Agents and Biological Exposure Indices (BEIs)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 91 00 - 5

St. Cloud VA Health Care System St. Cloud, Minnesota 56303 Construct/Replace Building 50 MEP Systems Bancroft Architects + Engineers 01-01-21 ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition) C. ASME International (ASME): A13.1-07 (R2013)Scheme for the Identification of Piping Systems D. Code of Federal Regulation (CFR): 40 CFR 59......Determination of Volatile Matter Content, Water Content, Density Volume Solids, and Weight Solids of Surface Coating E. Commercial Item Description (CID): A-A-1272A.....Plaster Gypsum (Spackling Compound) F. Federal Specifications (Fed Spec): TT-P-1411A.....Paint, Copolymer-Resin, Cementitious (For Waterproofing Concrete and Masonry Walls) (CEP) G. Master Painters Institute (MPI): 1....Aluminum Paint 3.....Primer, Alkali Resistant, Water Based 4.....Interior/ Exterior Latex Block Filler 5.....Exterior Alkyd Wood Primer 6..... Exterior, Latex for Exterior Wood Primer 7.....Exterior Oil Wood Primer 8..... Exterior Alkyd, Flat MPI Gloss Level 1 9..... Exterior Alkyd Enamel MPI Gloss Level 6 10.....Exterior Latex, Flat 11.....Exterior Latex, Semi-Gloss 15..... Exterior Latex, Low Sheen (MPI Gloss Level 3-4) 17..... Primer, Bonding, Waterbased 18..... Zinc Rich Primer 22.....Aluminum Paint, High Heat (up to 590% - 1100F) 23.....Primer, Metal, Surface Tolerant 27..... Exterior / Interior Alkyd Floor Enamel, Gloss 31.....Polyurethane, Moisture Cured, Clear Gloss 36.....Knot Sealer 39..... for Interior Wood 40.....Exterior, Latex High Build 42.....Textured Coating, Latex, Flat Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

01-01-21

43 API Gloss Level 4
44 MPI Gloss Level 2
45Interior Primer Sealer
46Interior Enamel Undercoat
47 Interior Alkyd, Semi-Gloss, MPI Gloss Level 5
48 Interior Alkyd, Gloss, MPI Gloss Level 6
50Interior Latex Primer Sealer
51 Slower States State
52 Interior Latex, MPI Gloss Level 3
53 Interior Latex, Flat, MPI Gloss Level 1
54 Interior Latex, Semi-Gloss, MPI Gloss Level 5
59 & Floor Enamel, Low
Gloss
60 & Floor Paint, Low
Gloss
66 Clear Top-Coat (ULC
Approved)
67
Approved)
68 & Floor Paint,
Gloss
71
77Epoxy Cold Cured, Gloss
79Marine Alkyd Metal Primer
90Interior Wood Stain, Semi-Transparent
91Wood Filler Paste
94Exterior Alkyd, Semi-Gloss
95Fast Drying Metal Primer
98High Build Epoxy Coating
99 Sealer, Water-based, for Concrete Floors
101 Epoxy Anti-Corrosive Metal Primer
107 Water-based
108 Low Gloss
113 Water-based,
Flat
Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

01-01-21 114..... Interior Latex, Gloss 115..... Epoxy-Modified Latex, Interior Gloss (MPI gloss level 6) 118.....Dry Fall, Latex Flat 119.....Exterior Latex, High Gloss (acrylic) 134.....Galvanized Water Based Primer 138..... Interior High-Performance Latex, MPI Gloss Level 2 139..... Interior High-Performance Latex, MPI Gloss Level 3 140..... Interior High-Performance Latex, MPI Gloss Level 4 141..... Interior High-Performance Latex (SG) MPI Gloss Level 5 144.....Latex, Interior, Institutional Low Odor / VOC, (MPI Gloss Level 2) 145.....Latex, Interior, Institutional Low Odor / VOC, (MPI Gloss Level 3) 146.....Latex, Interior, Institutional Low Odor / VOC, (MPI Gloss Level 4) (MPI Gloss Level 3) 153...... Light Industrial Coating, Interior, Water-based, (MPI Gloss Level 4) 163.....Exterior Water Based Semi-Gloss Light Industrial Coating, MPI Gloss Level 5 164.....Exterior, Water Based, Gloss, Light Industrial Coating, MPI Gloss Level 6 H. Society for Protective Coatings (SSPC):

- SSPC SP 1-82(R2004)....Solvent Cleaning SSPC SP 2-82(R2004)....Hand Tool Cleaning SSPC SP 3-28(R2004)....Power Tool Cleaning SSPC SP 10/NACE No.2...Near-White Blast Cleaning SSPC PA Guide 10.....Guide to Safety and Health Requirements I. Maple Flooring Manufacturer's Association (MFMA): J. U.S. National Archives and Records Administration (NARA): 29 CFR 1910.1000.....Air Contaminants
- K. Underwriter's Laboratory (UL)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 91 00 - 8

01-01-21

PART 2 - PRODUCTS

2.1 MATERIALS:

A. Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents.

2.2 PAINT PROPERTIES:

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.
- C. Provide undercoat paint produced by the same manufacturer as the finish coats. Use only thinners approved by the paint manufacturer and use only to recommended limits.
- D. VOC Content: For field applications that are inside the weatherproofing system, paints and coating to comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:
 - 1. Flat Paints and Coatings: 50 gram/liter.
 - 2. Non-flat Paints and Coatings: 150 gram/liter.
 - 3. Dry-Fog Coatings: 400 gram/liter.
 - 4. Primers, Sealers, and Undercoaters: 200 gram/liter.
 - 5. Anticorrosive and Antirust Paints applied to Ferrous Metals: 250 gram/liter.
 - 6. Zinc-Rich Industrial Maintenance Primers: 340 gram/liter.
 - 7. Pretreatment Wash Primers: 420 gram/liter.
 - 8. Shellacs, Clear: 730 gram/liter.
 - 9. Shellacs, Pigmented: 550 gram/liter.
- E. VOC test method for paints and coatings is to be in accordance with 40 CFR 59 (EPA Method 24). Part 60, Appendix A with the exempt compounds' content determined by Method 303 (Determination of Exempt Compounds) in the South Coast Air Quality Management District's (SCAQMD) "Laboratory Methods of Analysis for Enforcement Samples" manual.

2.3 PLASTIC TAPE:

A. Pigmented vinyl plastic film in colors as specified in the Room Finish Legend as part of the drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

B. Pressure sensitive adhesive back.

2.4 BIOBASED CONTENT

A. Paint products shall comply with following bio-based standards for biobased materials:

Material Type	Percent by Weight
Interior Paint	20 percent biobased material
Exterior Paint	20 percent biobased material
Wood & Concrete Sealer- Penetrating Liquid	79 percent biobased content

B. The minimum-content standards are based on the weight (not the volume) of the material.

PART 3 - EXECUTION

3.1 JOB CONDITIONS:

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - 1. Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - 2. Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each day's work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the COR and the product manufacturer. Under no circumstances are application conditions to exceed manufacturer recommendations.
 - c. When the relative humidity exceeds 85 percent; or to damp or wet surfaces; unless otherwise permitted by the paint manufacturer's printed instructions.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - 4. Do not paint in direct sunlight or on surfaces that the sun will warm.

5. Apply only on clean, dry and frost-free surfaces except as follows: Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

01-01-21

- a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces only when allowed by manufacturer's printed instructions.
- b. Concrete and masonry when permitted by manufacturer's recommendations, dampen surfaces to which water thinned acrylic and cementitious paints are applied with a fine mist of water on hot dry days to prevent excessive suction and to cool surface.
- 6. Varnishing:
 - a. Apply in clean areas and in still air.
 - b. Before varnishing vacuum and dust area.
 - c. Immediately before varnishing wipe down surfaces with a tack rag.

3.2 INSPECTION:

A. Examine the areas and conditions where painting and finishing are to be applied and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.3 GENERAL WORKMANSHIP REQUIREMENTS:

- A. Application may be by brush or roller. Spray application only upon acceptance from the COR in writing.
- B. Furnish to the COR a painting schedule indicating when the respective coats of paint for the various areas and surfaces will be completed. This schedule is to be kept current as the job progresses.
- C. Protect work at all times. Protect all adjacent work and materials by suitable covering or other method during progress of work. Upon completion of the work, remove all paint and varnish spots from floors, glass and other surfaces. Remove from the premises all rubbish and accumulated materials of whatever nature not caused by others and leave work in a clean condition.
- D. Remove and protect hardware, accessories, device plates, lighting fixtures, and factory finished work, and similar items, or provide in place protection. Upon completion of each space, carefully replace all removed items by workmen skilled in the trades involved.
- E. When indicated to be painted, remove electrical panel box covers and doors before painting walls. Paint separately and re-install after all paint is dry.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- F. Materials are to be applied under adequate illumination, evenly spread and flowed on smoothly to avoid runs, sags, holidays, brush marks, air bubbles and excessive roller stipple.
- G. Apply materials with a coverage to hide substrate completely. When color, stain, dirt or undercoats show through final coat of paint, the surface is to be covered by additional coats until the paint film is of uniform finish, color, appearance and coverage, at no additional cost to the Government.
- H. All coats are to be dry to manufacturer's recommendations before applying succeeding coats.
- All suction spots or "hot spots" in plaster after the application of the first coat are to be touched up before applying the second coat.
- J. Do not apply paint behind frameless mirrors that use mastic for adhering to wall surface.

3.4 SURFACE PREPARATION:

- A. General:
 - The Contractor shall be held wholly responsible for the finished appearance and satisfactory completion of painting work. Properly prepare all surfaces to receive paint, which includes cleaning, sanding, and touching-up of all prime coats applied under other Sections of the work. Broom clean all spaces before painting is started. All surfaces to be painted or finished are to be completely dry, clean and smooth.
 - See other sections of specifications for specified surface conditions and prime coat.
 - 3. Perform preparation and cleaning procedures in strict accordance with the paint manufacturer's instructions and as herein specified, for each particular substrate condition.
 - 4. Clean surfaces before applying paint or surface treatments with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry. Schedule the cleaning and painting so that dust and other contaminants from the cleaning process will not fall in wet, newly painted surfaces.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- 5. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - a. Concrete: 12 percent.
 - b. Fiber-Cement Board: 12 percent.
 - c. Masonry (Clay and CMU's): 12 percent.
 - d. Wood: 15 percent.
 - e. Gypsum Board: 12 percent.
 - f. Plaster: 12 percent.
- B. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning).
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. Fill flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
 - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
 - 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- C. Zinc-Coated (Galvanized) Metal Surfaces Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non-Cementitious Galvanized Primer) depending on finish coat compatibility.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- D. Masonry, Concrete, Cement Board, Cement Plaster and Stucco:
 - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.
 - 4. Replace mortar and fill open joints, holes, cracks and depressions with new mortar specified in Section 04 05 13, MASONRY MORTARING, Section 04 05 16, MASONRY GROUTING. Do not fill weep holes. Finish to match adjacent surfaces.
 - 5. Neutralize Concrete floors to be painted by washing with a solution of 1.4 Kg (3 pounds) of zinc sulfate crystals to 3.8 L (1 gallon) of water, allow to dry three (3) days and brush thoroughly free of crystals.
 - Repair broken and spalled concrete edges with concrete patching compound to match adjacent surfaces as specified in Division 03, CONCRETE Sections. Remove projections to level of adjacent surface by grinding or similar methods.
- E. Gypsum Plaster and Gypsum Board:
 - Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.5 PAINT PREPARATION:

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

D. Mix two (2) component and two (2) part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.

E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.6 APPLICATION:

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three (3) coats; prime, body, and finish. When two (2) coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.
- E. Apply by brush or roller. Spray application for new or existing occupied spaces is not acceptable.
- F. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items.

3.7 PRIME PAINTING:

- A. After surface preparation, prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Gypsum Board:
 - 1. Surfaces scheduled to have MPI 10 (Exterior Latex, Flat), MPI 52 (Interior Latex, MPI Gloss Level 3), and MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5) finish: Use MPI 10 (Exterior Latex, Flat), MPI 53 (Interior Latex, MPI Gloss Level 3), and MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5).

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 01-01-21

- Primer: MPI 50 (Interior Latex Primer Sealer), except use MPI 45 (Interior Primer Sealer) in the kitchen tray service and dishwashing areas.
- E. Concrete Masonry Units except glazed or integrally colored and decorative units:
 - 1. MPI 4 (Block Filler) on interior surfaces.
- F. Cement Plaster or stucco, Concrete, Masonry, and Cement board Interior Surfaces of Ceilings and Walls:
 - 1. MPI 52 (Interior Latex, MPI Gloss Level 3.
- G. Concrete Floors: MPI 60 (Interior/ Exterior Latex Porch & Floor Paint, Low Gloss).

3.8 EXTERIOR FINISHES:

- A. Apply following finish coats where specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Steel and Ferrous Metal:
 - Two (2) coats of MPI 8 (Exterior Alkyd, Flat) on exposed surfaces, except on surfaces over 94 degrees C (201 degrees F).
 - 2. One (1) coat of MPI 22 (High Heat Resistant Coating) on surfaces over 94 degrees K (290 degrees F).

3.9 INTERIOR FINISHES:

- A. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. Apply two (2) coats of MPI 47 (Interior Alkyd, Semi-Gloss) unless specified otherwise.
 - b. Ferrous Metal over 94 degrees K (290 degrees F): Boilers,
 Incinerator Stacks, and Engine Exhaust Pipes: One (1) coat MPI 22
 (High Heat Resistant Coating.
- B. Gypsum Board:
 - One (1) coat of MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat), plus one (1) coat of MPI 139 (Interior High Performance Latex, MPI Gloss level 3).
- C. Plaster:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- One (1) coat of MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) or MPI 50 (Interior Latex Primer Sealer), plus one (1) coat of MPI 139 (Interior High Performance Latex, MPI Gloss level 3).
- D. Masonry and Concrete Walls:
 - 1. Over MPI 4 (Interior/Exterior Latex Block Filler) on CMU surfaces.
 - 2. Two (2) coats of MPI 139 (Interior High Performance Latex, MPI Gloss Level 3).
- E. Cement Board: One (1) coat of MPI 139 (Interior High Performance Latex, MPI Gloss Level 3).
- F. Concrete Floors: One (1) coat of MPI 68 (Interior/ Exterior Latex Porch & Floor Paint, Gloss).

3.10 REFINISHING EXISTING PAINTED SURFACES:

- A. Clean, patch and repair existing surfaces as specified under "Surface Preparation". No "telegraphing" of lines, ridges, flakes, etc., through new surfacing is permitted. Where this occurs, sand smooth and re-finish until surface meets with COR's approval.
- B. Remove and reinstall items as specified under "General Workmanship Requirements".
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- H. Sand or dull glossy surfaces prior to painting.
- I. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.11 PAINT COLOR:

A. Color and gloss of finish coats is specified in the Room Finish Legend as part of the drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

- B. For additional requirements regarding color see Articles, "REFINISHING EXISTING PAINTED SURFACE" and "MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE".
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.12 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE:

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. In spaces not scheduled to be finish painted in the Room Finish Legend, finish as specified below.
- C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.
- G. Omit field painting of items specified in "BUILDING AND STRUCTURAL WORK FIELD PAINTING"; "Building and Structural Work not Painted".
- H. Color:
 - Paint items having no color specified the Room Finish Legend as part of the Drawings to match surrounding surfaces, except for the following:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

- a. White: Exterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping.
- b. Gray: Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment.
- c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe).
- d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
- e. Federal Safety Orange: Entire lengths of electrical conduits containing feeders 600 volts or more.
- f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Exterior Locations:
 - a. Apply two (2) coats of MPI 8 (Exterior Alkyd, Flat) to the following ferrous metal items:
 - Vent and exhaust pipes with temperatures under 94 degrees C(201 degrees F), roof drains, fire hydrants, post indicators, yard hydrants, exposed piping and similar items.
 - b. Apply two (2) coats of MPI 10 (Exterior Latex, Flat) to galvanized and zinc-copper alloy metal.
 - c. Apply one (1) coat of MPI 22 (High Heat Resistant Coating), 650 degrees C (1200 degrees F) to incinerator stacks, boiler stacks, and engine generator exhaust.
 - 2. Interior Locations:
 - a. Apply two (2) coats of MPI 47 (Interior Alkyd, Semi-Gloss) to following items:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

- Metal under 94 degrees C (201 degrees F) of items such as bare piping, fittings, hangers and supports.
- ii. Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards.
- iii. Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.
- b. Ferrous metal exposed in the kitchen tray service and dishwashing areas: One (1) coat of MPI 101 (Cold Curing Epoxy Primer) and one (1) coat of MPI 108 (High Build Epoxy Marine coating).
- c. Apply one (1) coat of MPI 50 (Interior Latex Primer Sealer) and one (1) coat of MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5) on finish of insulation on boiler breeching and uptakes inside boiler house, drums, drumheads, oil heaters, feed water heaters, tanks and piping.
- d. Paint electrical conduits containing cables rated 600 volts or more using two (2) coats of MPI 94 (Exterior Alkyd, Semi-gloss) in the Federal Safety Orange color in exposed and concealed spaces full length of conduit.
- 3. Other exposed locations:
 - a. Cloth jackets of insulation of ducts and pipes in connection with plumbing, air conditioning, ventilating refrigeration and heating systems: One (1) coat of MPI 50 (Interior Latex Primer Sealer) and one (1) coat of MPI 10 (Exterior Latex, Flat).

3.13 BUILDING AND STRUCTURAL WORK FIELD PAINTING:

- A. Painting and finishing of interior and exterior work except as specified here-in-after.
 - 1. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
 - 2. Painting of ferrous metal and galvanized metal.
 - 3. Painting of wood with fire retardant paint exposed in attics, when used as mechanical equipment space (except shingles).
 - 4. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 91 00 - 20

01-01-21

- a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
- b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
- 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.
- 3. Concealed surfaces:
 - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed casework and equipment.
- 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
 - b. Tracks for overhead or coiling doors, shutters, and grilles.
- 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Intertek Testing Service or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
- 6. Galvanized metal:
 - Exterior chain link fence and gates, corrugated metal areaways, and gratings.
 - b. Gas Storage Racks.
 - c. Except where specifically specified to be painted.
- 7. Gaskets.
- 8. Exterior exposed foundations walls.
- 9. Structural steel encased in concrete, masonry, or other enclosure.
- 10. Ceilings, walls, and columns in pipe basements.
- 11. Wood Shingles.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

01-01-21

3.14 IDENTITY PAINTING SCHEDULE:

- A. Identify designated service in new buildings or projects with extensive remodeling in accordance with ASME A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels. For existing spaces where work is minor match existing.
 - 1. Legend may be identified using snap-on coil plastic markers or by paint stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12.2 M (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow using black stencil paint.
 - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on construction documents where asterisk appears for High, Medium, and Low-Pressure designations as follows: a. High Pressure - 414 kPa (60 psig) and above.

 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.
 - 6. Legend name in full or in abbreviated form as follows:

		COLOR OF	COLOR OF	COLOR OF	LEGEND
PIPI	NG	EXPOSED PIPING	BACKGROUND	LETTERS	ABBREVIATIONS
Blow-off			Green	White	Blow-off
Boiler Feedwater		Green	White	Blr Feed	
A/C Condens	ser Wate	er			
Supply		Green	White	A/C Cond Wtr Sup	
A/C Condens	ser Wate	er			
Return		Green	White	A/C Cond Wtr Ret	
Chilled Water Supply		Green	White	Ch. Wtr Sup	
Chilled Water Return		Green	White	Ch. Wtr Ret	
Shop Compressed Air		Blue	White	Shop Air	
Air-Instrum	nent Con	trols	Green	White	Air-Inst Cont
Contract No Station Pro		319D0022 . 656-19-039			
		t No. 18-116			06/02/202

				01 01
Drain Line		Green	White	Drain
Emergency Shower	Green	White	Emg Shower	
High Pressure Steam	Green	White	H.P*	
High Pressure Condensa	te			
Return		Green	White	H.P. Ret*
Medium Pressure Steam		Green	White	M. P. Stm*
Medium Pressure Conden	sate			
Return		Green	White	M.P. Ret*
Low Pressure Steam		Green	White	L.P. Stm*
Low Pressure Condensat	e			
Return		Green	White	L.P. Ret*
High Temperature Water				
Supply		Green	White	H. Temp Wtr Sup
High Temperature Water				
Return		Green	White	H. Temp Wtr Ret
Hot Water Heating Supp	ly	Green	White	H. W. Htg Sup
Hot Water Heating Retu	rn	Green	White	H. W. Htg Ret
Gravity Condensate Ret	urn	Green	White	Gravity Cond Ret
Pumped Condensate Retu	rn	Green	White	Pumped Cond Ret
Vacuum Condensate Retu	rn	Green	White	Vac Cond Ret
Fuel Oil - Grade	Brown	White	Fuel Oil-Grade	
(Diesel Fuel included	under Fuel	Oil)		
Boiler Water Sampling		Green	White	Sample
Chemical Feed		Green	White	Chem Feed
Continuous Blow-Down		Green	White	Cont. B D
Pumped Condensate		Green	White	Pump Cond
Pump Recirculating		Green	White	Pump-Recirc.
Vent Line		Green	White	Vent
Alkali		Orange	Black	Alk
Bleach		Orange	Black	Bleach
Detergent		Yellow	Black	Det
Liquid Supply		Yellow	Black	Liq Sup
Reuse Water		Yellow	Black	Reuse Wtr
Cold Water (Domestic)	White	Green	White	C.W. Dom
Hot Water (Domestic)				
Supply	White	Yellow	Black	H.W. Dom
Return	White	Yellow	Black	H.W. Dom Ret
Tempered Water	White	Yellow	Black	Temp. Wtr
Ice Water				
Supply	White	Green	White	Ice Wtr
Return	White	Green	White	Ice Wtr Ret
Reagent Grade Water		Green	White	RG

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

09 91 00 - 23

06/02/2023

01-01-21

Reverse Osmosis		Green	White	RO
Sanitary Waste	Green	White	San Waste	
Sanitary Vent	Green	White	San Vent	
Storm Drainage	Green	White	St Drain	
Pump Drainage	Green	White	Pump Disch	
Chemical Resistant Pipe				
Waste		Orange	Black	Acid Waste
Vent		Orange	Black	Acid Vent
Atmospheric Vent	Green	White	ATV	
Silver Recovery	Green	White	Silver Rec	
Oral Evacuation	Green	White	Oral Evac	
Fuel Gas		Yellow	Black	Gas
Fire Protection Water				
Sprinkler	Red	Red	White	Auto Spr
Standpipe	Red	Red	White	Stand
Sprinkler	Red	Red	White	Drain

- 7. Electrical Conduits containing feeders over 600 volts, paint legends using 50 mm (2 inch) high black numbers and letters, showing the voltage class rating. Provide legends where conduits pass through walls and floors and at maximum 6096 mm (20 foot) intervals in between. Use labels with yellow background with black border and words Danger High Voltage Class, 5000, 15000, 25000.
- 8. See Sections for methods of identification, legends, and abbreviations of the following:
 - a. Regular compressed air lines: Section 22 15 00, GENERAL SERVICE COMPRESSED-AIR SYSTEMS.
 - b. Medical Gases and vacuum lines: Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES / Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.
 - c. Conduits containing high voltage feeders over 600 volts: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS / Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS / Section 28 05 28.33, CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY.
- B. Fire and Smoke Partitions:
 - 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.

2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

09 91 00 - 24

01-01-21

- Locate not more than 6096 mm (20 feet) on center on corridor sides of partitions, and with a least one (1) message per room-on-room side of partition.
- 4. Use semi-gloss paint of color that contrasts with color of substrate.
- C. Identify columns in pipe basements and interstitial space:
 - Apply stenciled number and letters to correspond with grid numbering and lettering indicated on construction documents.
 - Paint numbers and letters 101 mm (4 inches) high, locate 45 mm (18 inches) below overhead structural slab.
 - 3. Apply on four (4) sides of interior columns and on inside face only of exterior wall columns.
 - 4. Color:
 - a. Use black on concrete columns.
 - b. Use white or contrasting color on steel columns.

3.15 PROTECTION CLEAN UP, AND TOUCH-UP:

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

DIVISION 10

Bancroft Architects + Engineers

01-01-21

SECTION 10 14 00 SIGNAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies interior signage for room numbers, directional signs exterior signage, code required signs and temporary signs.
- B. This section specifies exterior signage.

1.2 RELATED WORK

A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements

1.3 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Provide signage that is the product of one manufacturer, who has provided signage as specified for a minimum of three (3) years. Submit manufacturer's qualifications.
- B. Installer's Qualifications: Minimum three (3) years' experience in the installation of signage of the type as specified in this Section. Submit installer's qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 00, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Volatile organic compounds per volume as specified in PART 2 -PRODUCTS.
- C. Interior Sign Samples: Sign panels and frames, with letters and symbols, for each sign type.
 - 1. Sign Panel, 203 x 254 mm (8 x 10 inches), with letters.
 - Color samples of each color, 152 x 152 mm (6 x 6 inches. Show anticipated range of color and texture.
 - 3. Sample of typeface, arrow and symbols in a typical full-size layout.
- D. Exterior Sign Samples: 152 x 152 mm (6 x 6 inches) samples of each color and material.
- E. Manufacturer's Literature:
 - 1. Showing the methods and procedures proposed for the anchorage of the signage system to each surface type.
 - 2. Manufacturer's printed specifications and maintenance instructions.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

10 14 00 - 1

Bancroft Architects + Engineers

F. Sign Location Plan, showing location, type and total number of signs required.

- G. Shop Drawings: Scaled for manufacture and fabrication of sign types. Identify materials, show joints, welds, anchorage, accessory items, mounting and finishes.
- H. Full size layout patterns for dimensional letters.
- I. Manufacturer's qualifications.
- J. Installer's qualifications.

1.5 DELIVERY AND STORAGE

- A. Deliver materials to job in manufacturer's original sealed containers with brand name marked thereon. Protect materials from damage.
- B. Package to prevent damage or deterioration during shipment, handling, storage and installation. Maintain protective covering in place and in good repair until removal is necessary.
- C. Deliver signs only when the site and mounting services are ready for installation work to proceed.
- D. Store products in dry condition inside enclosed facilities.

1.6 WARRANTY

A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Architectural Manufacturers Association (AAMA): 611-14.........Anodized Architectural Aluminum 2603-13......Voluntary Specification, Performance Requirements and Test Procedures for Pigmented

Organic Coatings on Aluminum Extrusions and Panels

C. American National Standards Institute (ANSI):

A117.1-09.....Accessible and Usable Buildings and Facilities

D. ASTM International (ASTM): A36/A36M-19.....Carbon Structural Steel

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

10 14 00 - 2

06/02/2023

01-01-21

Bancroft Architects + Engineers 01-01-21 A240/A240M-20.....Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications A666-15.....Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar A1011/A1011M-18a.....Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength B36/B36M-18.....Brass Plate, Sheet, Strip, and Rolled Bar B152/B152M-19.....Copper Sheet, Strip, Plate, and Rolled Bar B209-14.....Aluminum and Aluminum-Alloy Sheet and Plate B209M-14.....Aluminum and Aluminum-Alloy Sheet and Plate (Metric) B221-14.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B221M-13.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes (Metric) C1036-16.....Flat Glass C1048-18..... Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass C1349-17.....Architectural Flat Glass Clad Polycarbonate D1003-13..... Test Method for Haze and Luminous Transmittance of Transparent Plastics D4802-16.....Poly (Methyl Methacrylate) Acrylic Plastic Sheet E. Code of Federal Regulation (CFR): 40 CFR 59......Determination of Volatile Matter Content, Water Content, Density Volume Solids, and Weight Solids of Surface Coating F. Federal Specifications (Fed Spec): MIL-PRF-8184F.....Plastic Sheet, Acrylic, Modified. MIL-P-46144C.....Plastic Sheet, Polycarbonate G. National Fire Protection Association (NFPA): 70-14.....National Electrical Code Contract No. 36C26319D0022

Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

10 14 00 - 3

Bancroft Architects + Engineers

01-01-21

PART 2 - PRODUCTS

2.1 SIGNAGE GENERAL

- A. Provide signs of type, size and design shown on the construction documents.
- B. Provide signs complete with lettering, framing and related components for a complete installation.
- C. Provide graphics items as completed units produced by a single manufacturer, including necessary mounting accessories, fittings and fastenings.
- D. Do not scale construction documents for dimensions. Verify dimensions and coordinate with field conditions. Notify Contracting Officer Representative (COR) of discrepancies or changes needed to satisfy the requirements of the construction documents.

2.2 EXTERIOR SIGNAGE PERFORMANCE REQUIREMENTS (NOT USED)

2.3 INTERIOR SIGN MATERIALS

- A. Match existing St. Cloud VA Health Care System sign materials. Performance criteria to be from the following options:
 - Cast Acrylic Sheet: MIL-PRF-8184F; Type II, class 1, Water white non-glare optically clear. Matt finish water white clear acrylic shall not be acceptable.
 - 2. Polycarbonate: MIL-P-46144C; Type I, class 1.
 - 3. Vinyl: Premium grade 0.1 mm (0.004 inch) thick machine cut, having a pressure sensitive adhesive and integral colors.

B. Adhesives:

- Adhesives for Field Application: Mildew-resistant, nonstaining adhesive for use with specific type of panels, sheets, or assemblies; and for substrate application; as recommended in writing by signage manufacturer.
- 2. Adhesives to have VOC content of 50 g/L or less when calculated according to 40 CFR 59, (EPA Method 24).
- C. Typography: Comply with VA Signage Design Manual.
 - Type Style: Helvetica Medium and Helvetica Medium Condensed. Initial caps or all caps, as indicated in Sign Message Schedule as part of the Contract Drawings.
 - 2. Arrow: Comply with graphic standards in construction documents.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

```
01-01-21
```

- Letter spacing: Comply with graphic standards in construction documents.
- Letter spacing: Comply with graphic standards in construction documents.
- 5. Provide text, arrows, and symbols in size, colors, typefaces and letter spacing shown in construction documents. Text shall be a true, clean, accurate reproduction of typeface(s). Text shown in construction documents is for layout purposes only; final text for signs is to be provided by the VA Contracting Officer Representative (COR).

2.4 EXTERIOR SIGN MATERIALS (NOT USED)

2.5 INTERIOR SIGN TYPES

- A. Conform to the VA Signage Design Guide.
- B. Provide sign component system to match the St. Cloud VA Health Care System standard.
- C. Component System Signs:
 - 1. Performance standards as follows:
 - a. Interchangeable system that allows for changes of graphic components of the installed sign, without changing sign in its entirety.
 - b. Provide sign system comprised of following primary components: Rail Back: Horizontal rails, spaced to allow for uniform, modular sizing of sign types.
 - Rail Insert: Mount to back of Copy Panels to allow for attachment to Rail Back.
 - 2) Copy Panels: Fabricate of ABS, photopolymer, and acrylic materials to match the St. Cloud VA Health Care System standard and to allow for different graphic needs.
 - End Caps: Interlock to Rail Back to enclose and secure changeable Copy Panels.
 - 4) Joiners and Accent Joiners: To connect separate Rail Backs together.
 - 5) Top Accent Bars: To provide decorative trim cap that encloses the top of sign.
- c. Provide rail back, rail insert and end caps in anodized extruded aluminum. Contract No. 36C26319D0022

Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- d. Provide signs in system that are convertible in the field to allow for enlargement from one (1) size to another in height and width through use of joiners or accent joiners, which connect rail back panels together blindly, providing a butt joint between copy panels. Connect accent joiners to rail backs with a visible 3 mm (1/8") horizontal rib, flush to the adjacent copy insert surfaces.
- e. Provide sign configurations as indicated on construction documents that vary in width from 228 mm (9 inches) to 2032 mm (80 inches), and have height dimensions of 50 mm (2 inches), 76 mm (3 inches), 152 mm (6 inches), 228 mm (9 inches) and 305 mm (12 inches). Height that can be increased beyond 305 mm (12 inches), by repeating height module in full or in part.
- Rail back functions as internal structural member of sign. Fabricate of 6063T5-extruded aluminum, anodized black.
 - a. Fabricate to accept an extruded aluminum or plastic insert on either side, depending upon sign type.
 - b. Provide components that are convertible in field to allow for connection to other rail back panels.
 - c. Provide mounting devices including wall mounting for screw-on applications, wall mounting with pressure sensitive tape , ceiling mount and other mounting devices as needed.
- 3. Provide rail insert functions as mounting device for copy panels on to the rail back. The rail insert mounts to the back of the copy panel with adhesive suitable for attaching particular copy insert material.
 - a. Provide copy panels that slide or snap into the horizontal rail back.
- 4. Provide copy panels that accept various forms of copy and graphics, and attach to the rail back with the rail insert. Provide copy panels fabricated of ABS plastic with integral color or an acrylic lacquer finish or acrylic.
 - a. Provide copy panels that are interchangeable by sliding horizontally from either side of sign, and to other signs in system of equal or greater width or height.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

Bancroft Architects + Engineers

- b. Provide materials that are cleanable without use of special chemicals or cleaning solutions.
- c. Copy Panel Materials.
 - ABS Inserts: 2.3 mm (.090 inches) extruded ABS plastic core with .07 mm (.003 inches) acrylic cap bonded during extrusion/texturing process.
 - a) Pressure bonded to extruded rail insert with adhesive.
 - b) Background Color: Integral or painted in acrylic lacquer.
 - c) Finished: Texture pattern.
 - 2) Photopolymer Inserts: 3.2 mm (.125 inches) phenolic photo polymer with raised copy etched to 2.3 mm (.0937 inches), bonded to an ABS plastic or extruded aluminum insert with adhesive.

a) a) Background Color: Painted, acrylic enamel.

- 3) Changeable Paper/ Insert Holder: Extruded insert holder with integral rail insert for connection with structural back panel in 6063T5 aluminum with a black anodized finish.
 - a) Inserts into holder are paper with a clear 0.76 mm(.030 inches) textured cover.
 - b) Background Color: Painted, acrylic lacquer.
- 4) Acrylic 2 mm (.080 inches) non-glare acrylic.
 - a) Pressure bonded to extruded rail insert using adhesive.
 - b) Background Color: Painted in acrylic lacquer or acrylic enamel.
- 5) Extruded 6063T5 aluminum with a black anodized finish insert holder with integral rail insert for connection with structural back panel to hold 0.76 mm (.030 inches) textured polycarbonate insert and a sliding tile which mounts in the inset holder and slides horizontally.
- 5. End Caps: Extruded using 6063T5 aluminum with a black anodized finish. End caps interlock with rail back with clips to form an integral unit, enclosing and securing the changeable copy panels, without requiring tools for assembly.
 - a. Interchangeable to each end of sign and to other signs in signage system of equal height.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 01-01-21

Bancroft Architects + Engineers

- b. Provide mechanical fasteners that can be added to the end caps that will secure it to rail back to make sign tamper resistant.
- 6. Joiners: Extruded using 6063T5 aluminum with a black anodized finish. Rail joiners connect rail backs together blindly, providing a butt joint between copy inserts.
- 7. Accent Joiners: Extruded using 6063T5 aluminum with a mirror polished finish. Connect joiner and rail backs together with a visible 3 mm (.125 inches) horizontal rib, flush to the adjacent copy panel surfaces.
- 8. Top Accent Rail: Extruded rail using 6063T5 aluminum with a mirror polished finish that provides a 3.2 mm (.125 inches) high decorative trim cap. Cap butts flush to adjacent copy panel and encloses top of rail back and copy panel.
- 9. Typography:
 - a. Vinyl First Surface Copy (non-tactile): Applied vinyl copy.
 - b. Subsurface Copy Inserts: Textured 1 mm (.030 inches) clear polycarbonate face with subsurface applied vinyl copy.
 - Spray face back with paint and laminated to extruded aluminum carrier insert.
 - c. Integral Tactile Copy Inserts: Phenolic photopolymer etched with 2.3 mm (.0937 inches) raised copy.
 - d. Silk-screened First Surface Copy (non-tactile): Injection molded or extruded ABS plastic insert with first surface applied enamel silk-screened copy.
- D. Tactile Sign:
 - Tactile sign made from a material that provides for letters, numbers and Braille to be integral with sign. Photopolymer etched metal, sandblasted phenolic or embossed material. Do not apply letters, numbers and Braille with adhesive.
 - Numbers, letters and Braille to be raised 0.8 mm (1/32 inches) from the background surface. The draft of the letters, numbers and Braille to be tapered, vertical and clean.
 - Braille Dots: Conform with ANSI A117.1 for Braille position and layout; (a) Dot base diameter: 1.5 mm (.059 inches) (b) Inter-dot spacing: 2.3 mm (.090 inches) (c) Horizontal separation between

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 01-01-21

Bancroft Architects + Engineers

cells: 6.0 mm (.241 inches) (d) Vertical separation between cells: 10.0 mm (.395 inches)

- Paint assembly specified color. After painting, apply white or other specified color to surface of the numbers and letters. Apply protective clear coat sealant to entire sign.
- 5. Finish: Eggshell, 11 to 19 degree on a 60 degree glossmeter.
- E. Provide cork or felt on bottom or mounting bracket when sign is mounted on counter or desk.
- F. For ceiling mounted signs, provide mounting hardware on the sign that allows for sign disconnection, removal, reinstallation, and reconnection.
- G. Temporary Interior Signs:
 - Fabricated from 50 kg (110 pound) matte finished white paper cut to 101 mm (4 inch) wide by 305 mm (12 inch) long.
 - a. Punched 3.2 mm (.125 inch) hole with edge of hole spaced 13 mm(.5 inch) in from edge and centered on 101 mm (4 inch) side.
 - b. Reinforce hole on both sides with suitable material that prevents tie from pulling through hole.
 - c. Ties: Steel wire 0.3 mm (0.120 inch) thick attached to tag with twist leaving 152 mm (6 inch) long free ends.
 - Mark architectural room number on sign, with broad felt marker in clearly legible numbers or letters that identify room, corridor or space as shown on construction documents.
 - 3. Install temporary signs to rooms that have a room, corridor or space number. Attach to door frame, doorknob or door pull.
 - a. Doors that do not require signs are: corridor doors in corridor with same number, folding doors or partitions, toilet doors, bathroom doors within and between rooms, closet doors within rooms, communicating doors in partitions between rooms with corridor entrance doors.
 - b. Replace and missing, damaged or illegible signs.

2.6 EXTERIOR SIGN TYPES (NOT USED)

2.7 FABRICATION

A. Design interior signage components to allow for expansion and contraction for a minimum material temperature range of 38 degrees C

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

Bancroft Architects + Engineers

(100 degrees F), without causing buckling, excessive opening of joints or over stressing of adhesives, welds and fasteners.

- B. Form work to required shapes and sizes, with true curve lines and angles. Provide necessary rebates, lugs and brackets for assembly of units. Provide concealed fasteners wherever possible.
- C. Shop fabricate so far as practicable. Fasten joints flush to conceal reinforcement, or weld joints, where thickness or section permits.
- D. Level and assemble contract surfaces of connected members so joints will be tight and practically unnoticeable, without applying filling compound.
- E. Signs: Fabricate with fine, even texture to be flat and sound.
 - Maintain lines and miters sharp, arises unbroken, profiles accurate and ornament true to pattern.
 - Plane surfaces to be smooth, flat and without oil-canning, free of rack and twist.
 - Maximum variation from plane of surface plus or minus 0.3 mm (0.015 inches). Restore texture to filed or cut areas.
- F. Finish extruded members to be free from extrusion marks. Fabricate square turns, sharp corners, and true curves.
- G. Finish hollow signs with matching material on all faces, tops, bottoms and ends. Miter edge joints to give appearance of solid material.
- H. Do not manufacture signs until final sign message schedule and location review has been completed by the COR and forwarded to contractor.
- I. Drill holes for bolts and screws. Mill smooth exposed ends and edges with corners slightly rounded.
- J. Form joints exposed to weather to exclude water.
- K. Movable Parts, Including Hardware: Cleaned and adjusted to operate as designed without binding or deformation of members. Center doors and covers in opening or frame.
 - 1. Align contact surfaces fit tight and even without forcing or warping components.
- L. Pre-assemble items in shop to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for re-assembly and coordinated installation.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 01-01-21

Bancroft Architects + Engineers

- M. Prime painted surfaces as required. Apply finish coating of paint for complete coverage with no light or thin applications allowing substrate or primer to show.
 - Finish surface smooth, free of scratches, gouges, drips, bubbles, thickness variations, foreign matter and other imperfections.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Locate signs as shown on the construction documents.
- B. Where not otherwise indicated conform to the VA Signage Design Manual for installation requirements.
- C. At each sign location there are no utility lines behind each sign location that will be affected by installation of signs.
 - Correct and repair damage done to utilities during installation of signs at no additional cost to Government.
- D. Provide inserts and anchoring devices which must be set in concrete or other material for installation of signs. Submit setting drawings, templates, instructions and directions for installation of anchorage devices, which may involve other trades.
- E. Refer to Sign Message Schedule for mounting method. Mount signs in proper alignment, level and plumb according to the Sign Location Plan and the dimensions given on elevation and Sign Location Plans. When exact position, angle, height or location is not clear, contact COR for resolution.
- F. When signs are installed on glass, provide blank glass back up to be placed on opposite side of glass exactly behind sign being installed. Provide blank glass back that is the same size as sign being installed.
- G. Touch up exposed fasteners and connecting hardware to match color and finish of surrounding surface.
- H. At completion of sign installation, clean exposed sign surfaces. Clean and repair adjoining or adjacent surfaces that became soiled or damaged as a result of installation of signs.

- - - END - - -

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

01-01-21

Bancroft Architects + Engineers

01-01-21

SECTION 10 26 00 WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies wall guards, handrail/wall guard combinations, corner guards and door/door frame protectors.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements.
- B. Section 08 71 00, DOOR HARDWARE: Armor plates and kick plates not specified in this section.

1.3 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer with a minimum of three (3) years' experience in providing items of type specified.
 - 1. Obtain wall and door protection from single manufacturer.
- B. Installer's Qualifications: Installers are to have a minimum of three(3) years' experience in the installation of units required for this project.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Volatile organic compounds per volume as specified in PART 2 -PRODUCTS.
- C. Shop Drawings: show design and installation details.
- D. Manufacturer's Literature and Data:
 - 1. Wall Guards.
 - 2. Corner Guards.
 - 3. Door/Door Frame Protectors.
- E. Test Report: Showing that resilient material complies with specified fire and safety code requirements.
- F. Manufacturer's qualifications.
- G. Installer's qualifications.
- H. Manufacturer's warranty.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

10 26 00 - 1

Bancroft Architects + Engineers

1.5 DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers marked with the name and brand, or trademark of the manufacturer.
- B. Protect from damage from handling and construction operations before, during and after installation.
- C. Store in a dry environment of approximately 21 degrees C (70 degrees F) for at least 48 hours prior to installation.

1.6 WARRANTY

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their wall and door protection for a minimum of five (5) years from date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.7 APPLICABLE PUBLICATIONS

- A. publications listed below form a part of this specification to extent referenced. publications are referenced in text by basic designation only.
- B. ASTM International (ASTM):

A240/A240M-20	Chromium and Chromium-Nickel Stainless Steel
	Plate, Sheet, and Strip for Pressure Vessels
	and For General Applications
B221-14	Aluminum and Aluminum-Alloy Extruded Bars,
	Rods, Wire, Profiles, and Tubes
B221M-13	Aluminum and Aluminum-Alloy Extruded Bars,
	Rods, Wire, Profiles, and Tubes (Metric)
D256-10(2018)	Determining the Izod Pendulum Impact Resistance
	of Plastics
D635-18	Rate of Burning and/or Extent and Time of
	Burning of Plastics in a Horizontal Position
E84-20	Surface Burning Characteristics of Building
	Materials

- C. Aluminum Association (AA): DAF 45-09.....Designation System for Aluminum Finishes
- D. American Architectural Manufacturers Association (AAMA): 611-14.....Voluntary Specification for Anodized

Architectural Aluminum

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

10 26 00 - 2

06/02/2023

01-01-21

Bancroft Architects + Engineers

E. Code of Federal Regulation (CFR):

01-01-21

- 40 CFR 59(2020) Subpart D National Volatile Organic Compound Emission Standards for Architectural Coatings
- F. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- G. National Fire Protection Association (NFPA): 80-2019.....Standard for Fire Doors and Other Opening

Protectives

H. SAE International (SAE):

J 1545-2014-10.....Instrumental Color Difference Measurement for Exterior Finishes, Textiles and Colored Trim.

I. Underwriters Laboratories Inc. (UL):
 Annual Issue.....Building Materials Directory

PART 2 - PRODUCTS

2.1 MATERIALS

A. Resilient Material:

- Provide resilient material consisting of high impact resistant extruded acrylic vinyl, polyvinyl chloride, or injection molded thermal plastic conforming to the following:
 - a. Minimum impact resistance of 960.8 N-m/m (18 feet-pounds/square inch) when tested in accordance with ASTM D256 (Izod impact, feet-pounds per inch notched).
 - b. Class 1 fire rating when tested in accordance with ASTM E84, having a maximum flame spread of 25 and a smoke developed rating of 450 or less.
 - c. Rated self-extinguishing when tested in accordance with ASTM D635.
 - d. Provide material labeled and tested by Underwriters Laboratories or other approved independent testing laboratory.
 - e. Provide resilient material for protection on fire rated doors and frames assemblies that is listed by the testing laboratory performing the tests.
 - f. Provide resilient material installed on fire rated wood/steel door and frame assemblies that have been tested on similar type assemblies. Test results of material tested on any other

combination of door and frame assembly are not acceptable. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06

10 26 00 - 3

Bancroft Architects + Engineers

```
01-01-21
```

- g. Provide integral color with colored components matched in accordance with SAE J 1545 to within plus or minus 1.0 on the CIE-LCH scales.
- 2. Bases of Design:
 - a. Handrail: Acrovyn HRB-4CN, color #100 Eggshell, or VA approved equal.
 - b. Corner Guard: Acrovyn SSM-25AN, color #100 Eggshell, or VA approved equal.
 - c. Door Guard: Acrovyn 4000 .060" Kickplate, color #209 Slate, or VA approved equal.
 - d. Crash Rail: Acrovyn SCR-48N, color #100 Eggshell, or VA approved equal.

2.2 CORNER GUARDS

- A. Resilient, Shock-Absorbing Corner Guards: Surface mounted type.
 - Snap-on corner guard formed from resilient material, minimum 1.98 mm (0.078-inch) thick, free floating on a continuous 1.52 mm (0.060-inch) thick extruded aluminum retainer. Provide appropriate mounting hardware, cushions and base plates as required.
 - Profile: Minimum 76 mm (3 inch) long leg and 6 mm (1/4 inch) corner radius.
 - 3. Height: 1.22 m (4 feet).
 - Retainer Clips: Provide manufacturer's standard impact-absorbing clips.
 - 5. Provide factory fabricated end closure caps at top and bottom of surface mounted corner guards.
 - 6. Flush mounted corner guards installed on any fire rated wall to be installed in a manner that maintains the fire rating of the wall. Provide fire test of proposed corner guard system to verify compliance.
 - a. Where insulating materials are an integral part of the corner guard system, provide insulating materials furnished by the manufacturer of the corner guard system.

2.3 WALL GUARDS AND HANDRAILS

- A. Resilient Wall Guards and Handrails:
 - 1. Handrail/Wall Guard Combination:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

10 26 00 - 4

06/02/2023

Bancroft Architects + Engineers

- a. Snap-on covers of resilient material, minimum 2 mm (0.078-inch) thick.
- b. Free-floating on a continuous, extruded aluminum retainer, minimum 1.82 mm (0.072-inch) thick.
- c. Anchor to wall at maximum 762 mm (30 inches) on center.
- 2. Wall Guards:
 - a. Snap-on covers of resilient material, minimum 2.54 mm (0.100inch) thick. Free-floating over a continuous extruded aluminum retainer, minimum 2.03 mm (0.080-inch) thick anchored to wall at maximum 610 mm (24 inches) on center.
- 3. Provide handrails and wall guards with prefabricated end closure caps, inside and outside corners, concealed splices, cushions, mounting hardware and other accessories as required. End caps and corners to be field adjustable to assure close alignment with handrails and wall guards. Screw or bolt closure caps to aluminum retainer in a concealed manner.

2.4 DOOR AND DOOR FRAME PROTECTION

- A. Fabricate door and door frame protection items from vinyl acrylic or polyvinyl chloride resilient material, minimum 1.52 mm (0.060-inch) thick, for doors and 0.89 mm (0.035-inch) thick for door frames.
- B. Provide adhesive as recommended by resilient material manufacturer.

2.5 HIGH IMPACT WALL COVERING (NOT USED)

2.6 FASTENERS AND ANCHORS

- A. Provide fasteners and anchors as required for each specific type of installation.
- B. Where type, size, spacing or method of fastening is not shown or specified in construction documents, submit shop drawings showing proposed installation details.

2.7 FINISH

A. Resilient Material: Embossed textures and color in accordance with SAE J1545.

PART 3 - INSTALLATION

3.1 RESILIENT CORNER GUARDS

A. Install corner guards on walls in accordance with manufacturer's

instructions. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

01-01-21

3.2 STAINLESS STEEL CORNER GUARDS (NOT USED)

3.3 RESILIENT WALL GUARDS HANDRAILS, WALL GUARD HANDRAIL COMBINATION

A. Secure guards to walls with brackets and fasteners in accordance with manufacturer's details and instructions.

3.4 ALUMINUM WALL GUARDS (NOT USED)

A. Secure brackets to walls with fasteners, spaced in accordance with manufacturer's installation instructions.

3.5 STAINLESS STEEL WALL GUARDS (NOT USED)

A. Space brackets at not more than 914 mm (3 feet) on centers and anchor to the wall in accordance with manufacturer's installation instructions.

3.6 DOOR AND DOOR FRAME PROTECTION

- A. Surfaces to receive protection to be clean, smooth and free of obstructions.
- B. Install protectors after frames are in place but preceding installation of doors in accordance with approved shop drawings and manufacturer's specific instructions.
- C. Apply with adhesive in controlled environment according to manufacturer's recommendations.
- D. Protection installed on fire rated doors and frames to be installed according to NFPA 80 and installation procedures listed in UL Building Materials Directory; or, equal listing by other approved independent testing laboratory establishing the procedures.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

DIVISION 21

Bancroft Architects + Engineers

SECTION 21 08 00

COMMISSIONING OF FIRE SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Fire Suppression systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 21 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 21, is required in cooperation with the VA and the Commissioning Agent.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11-1-16

21 08 00 - 1

Bancroft Architects + Engineers

```
11 - 1 - 16
```

B. The Fire Suppression systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the building fire suppression systems will require inspection of individual elements of the fire suppression construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

21 08 00 - 2

Bancroft Architects + Engineers

checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 21 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

11 - 1 - 16

21 08 00 - 3

Bancroft Architects + Engineers

maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 21 Sections for additional Contractor training requirements.

----- END -----

11-1-16

Bancroft Architects + Engineers

06-01-15

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- F. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 1500 square feet and Supply Processing and Distribution (SPD).
- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: Base water supply on a flow test of:
 - a. Project includes replacement of existing automatic sprinkler locations in an existing operative system. No changes to the flow or pressure requirements.
- 5. Zoning:
 - a. For each sprinkler zone provide a control valve, flow switch, and a test and drain assembly with pressure gauge. For buildings greater than two stories, provide a check valve at each control valve.
 - b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or

binders and provide an index referencing the appropriate specification Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

21 13 13 - 2

06/02/2023

06 - 01 - 15

Bancroft Architects + Engineers

section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

- 1. Qualifications:
 - a. Provide a copy of the installing contractors fire sprinkler and state contractor's license.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
 - c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1/8 inch scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

06 - 01 - 15

Bancroft Architects + Engineers

- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - 3) One complete set in AutoCAD format or a format as directed by the COR.
 - b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
 - c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
 - d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
 - e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers 06-01-15 mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Minnesota fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-22.....Installation of Sprinkler Systems
25-20....Inspection, Testing, and Maintenance of WaterBased Fire Protection Systems

101-21....Life Safety Code

170-21.....Fire Safety Symbols

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM): Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - Plain-end pipe fittings with locking lugs or shear bolts are not permitted.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- 2. Piping sizes 2 inches and smaller shall be black steel Schedule 40 with threaded end connections.
- 3. Piping sizes 2 ½ inches and larger shall be black steel Schedule 40 with welded or threaded ends and fittings, as outlined by the Facility Standards.
- 4. Plastic piping shall not be permitted except for drain piping.
- 5. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 VALVES

- A. General:
 - 1. Valves shall be in accordance with NFPA 13.
 - Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 3/4 inch in-line automatic ball drip with both ends threaded with iron pipe threads.

2.3 FIRE DEPARTMENT SIAMESE CONNECTION (NOT USED)

2.4 SPRINKLERS

A. All sprinklers shall be FM approved quick response except "institutional" type sprinklers shall be permitted to be UL Listed quick response. Provide FM approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, refrigerators, elevator hoistways, elevator machine rooms, and generator rooms.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06 - 01 - 15

Bancroft Architects + Engineers

- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated and sprinklers in generator rooms shall be no less than high temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.5 SPRINKLER CABINET

- A. Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each type of sprinkler in accordance with NFPA 13. Locate adjacent to the riser.
- B. Provide a list of sprinklers installed in the property in the cabinet. The list shall include the following:
 - 1. Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.
 - 2. General description of where each sprinkler is used.
 - 3. Quantity of each type present in the cabinet.
 - 4. Issue or revision date of list.

2.6 SPRINKLER SYSTEM SIGNAGE (NOT USED)

2.7 SWITCHES: (NOT USED)

2.8 GAUGES (NOT USED)

2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.10 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.11 ANTIFREEZE SOLUTION (NOT USED)

2.12 VALVE TAGS

Engraved black filled numbers and letters not less than 1/2 inch high for number designation, and not less than 1/4 inch for service designation on 19 gage, 1-1/2 inches round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

06 - 01 - 15

Bancroft Architects + Engineers

06-01-15

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- F. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 2 inches nominally larger than the penetrating pipe for pipe sizes 1 inch to 3 ½

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

06-01-15 inches and 4 inches nominally larger for penetrating pipe sizes 4 inches and larger.

- G. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- H. Where dry pendent sprinklers are used for freezers or similar spaces and they are connected to the wet pipe system, provide an EPDM boot around the dry pendent sprinkler on the heated side and securely seal to the pipe and freezer to prevent condensation from entering the freezer.
- I. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- J. For each fire department connection, provide the symbolic sign given in NFPA 170 and locate 8 to 10 feet above each connection location. Size the sign to 18 by 18 inches with the symbol being at least 14 by 14 inches.
- K. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- L. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- M. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
- b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR. Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone (if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)
- 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
- 3. Hydraulic Placards:
 - a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- N. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- O. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

06 - 01 - 15

Bancroft Architects + Engineers

06-01-15 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.

B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

DIVISION 22

Bancroft Architects + Engineers

09-01-20

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B.Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping and equipment exposed to weather be it temperature, humidity, precipitation, wind or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. A/E: Architect/Engineer
 - 5. AFF: Above Finish Floor
 - 6. AFG: Above Finish Grade
 - 7. AI: Analog Input
 - 8. AISI: American Iron and Steel Institute
 - 9. AO: Analog Output
 - 10. ASHRAE: American Society of Heating Refrigeration, Air Conditioning Engineers
 - 11. ASJ: All Service Jacket
 - 12. ASME: American Society of Mechanical Engineers
 - 13. ASPE: American Society of Plumbing Engineers
 - 14. AWG: American Wire Gauge
 - 15. BACnet: Building Automation and Control Network
 - 16. BAg: Silver-Copper-Zinc Brazing Alloy
 - 17. BAS: Building Automation System
 - 18. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 19. bhp: Brake Horsepower
 - 20. Btu: British Thermal Unit
 - 21. Btu/h: British Thermal Unit per Hour
 - 22. BSG: Borosilicate Glass Pipe

23. C: Celsius

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 11 - 1

06/02/2023

Bancroft Architects + Engineers

09-01-20

- 24. CA: Compressed Air
- 25. CD: Compact Disk
- 26. CDA: Copper Development Association
- 27. CGA: Compressed Gas Association
- 28. CFM: Cubic Feet per Minute
- 29. CI: Cast Iron
- 30. CLR: Color
- 31. CO: Contracting Officer
- 32. COR: Contracting Officer's Representative
- 33. CPVC: Chlorinated Polyvinyl Chloride
- 34. CR: Chloroprene
- 35. CRS: Corrosion Resistant Steel
- 36. CWP: Cold Working Pressure
- 37. CxA: Commissioning Agent
- 38. dB: Decibels
- 39. db(A): Decibels (A weighted)
- 40. DCW: Domestic Cold Water
- 41. DDC: Direct Digital Control
- 42. DFU: Drainage Fixture Units
- 43. DHW: Domestic Hot Water
- 44. DHWR: Domestic Hot Water Return
- 45. DHWS: Domestic How Water Supply
- 46. DI: Digital Input
- 47. DI: Deionized Water
- 48. DISS: Diameter Index Safety System
- 49. DN: Diameter Nominal
- 50. DO: Digital Output
- 51. DOE: Department of Energy
- 52. DVD: Digital Video Disc
- 53. DWG: Drawing
- 54. DWH: Domestic Water Heater
- 55. DWS: Domestic Water Supply
- 56. DWV: Drainage, Waste and Vent
- 57. ECC: Engineering Control Center
- 58. EL: Elevation

59. EMCS: Energy Monitoring and Control System Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

09-01-20

- 60. EPA: Environmental Protection Agency
- 61. EPACT: Energy Policy Act
- 62. EPDM: Ethylene Propylene Diene Monomer
- 63. EPT: Ethylene Propylene Terpolymer
- 64. ETO: Ethylene Oxide
- 65. F: Fahrenheit
- 66. FAR: Federal Acquisition Regulations
- 67. FD: Floor Drain
- 68. FDC: Fire Department (Hose) Connection
- 69. FED: Federal
- 70. FG: Fiberglass
- 71. FNPT: Female National Pipe Thread
- 72. FOR: Fuel Oil Return
- 73. FOS: Fuel Oil Supply
- 74. FOV: Fuel Oil Vent
- 75. FPM: Fluoroelastomer Polymer
- 76. FSK: Foil-Scrim-Kraft Facing
- 77. FSS: VA Construction & Facilities Management, Facility Standards Service
- 78. FU: Fixture Units
- 79. GAL: Gallon
- 80. GCO: Grade Cleanouts
- 81. GPD: Gallons per Day
- 82. GPH: Gallons per Hour
- 83. GPM: Gallons per Minute
- 84. HDPE: High Density Polyethylene
- 85. HEFP: Healthcare Environment and Facilities Program (replacement for OCAMES)
- 86. HEX: Heat Exchanger
- 87. Hg: Mercury
- 88. HOA: Hands-Off-Automatic
- 89. HP: Horsepower
- 90. HVE: High Volume Evacuation
- 91. Hz: Hertz
- 92. ID: Inside Diameter

93. IE: Invert Elevation Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 94. INV: Invert
- 95. IPC: International Plumbing Code
- 96. IPS: Iron Pipe Size
- 97. IW: Indirect Waste
- 98. IWH: Instantaneous Water Heater
- 99. Kg: Kilogram
- 100. kPa: Kilopascal
- 101. KW: Kilowatt
- 102. KWH: Kilowatt Hour
- 103.lb: Pound
- 104. lbs/hr: Pounds per Hour
- 105. LNG: Liquid Natural Gas
- 106. L/min: Liters per Minute
- 107. LOX: Liquid Oxygen
- 108. L/s: Liters per Second
- 109.m: Meter
- 110. MA: Medical Air
- 111. MAWP: Maximum Allowable Working Pressure
- 112. MAX: Maximum
- 113. MBH: 1000 Btu per Hour
- 114. MED: Medical
- 115. MER: Mechanical Equipment Room
- 116. MFG: Manufacturer
- 117. mg: Milligram
- 118. mg/L: Milligrams per Liter
- 119.ml: Milliliter
- 120.mm: Millimeter
- 121. MIN: Minimum
- 122. MV: Medical Vacuum
- 123. N2: Nitrogen
- 124. N20: Nitrogen Oxide
- 125. NC: Normally Closed
- 126. NF: Oil Free Dry (Nitrogen)
- 127.NG: Natural Gas
- 128. NIC: Not in Contract

129. NO: Normally Open Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- 130. NOM: Nominal
- 131. NPTF: National Pipe Thread Female
- 132. NPS: Nominal Pipe Size
- 133. NPT: Nominal Pipe Thread
- 134. NTS: Not to Scale
- 135.02: Oxygen
- 136.OC: On Center
- 137. OD: Outside Diameter
- 138. OSD: Open Sight Drain
- 139. OS&Y: Outside Stem and Yoke
- 140. PA: Pascal
- 141. PBPU: Prefabricated Bedside Patient Units
- 142. PD: Pressure Drop or Difference
- 143. PDI: Plumbing and Drainage Institute
- 144. PH: Power of Hydrogen
- 145. PID: Proportional-Integral-Differential
- 146. PLC: Programmable Logic Controllers
- 147. PP: Polypropylene
- 148. ppb: Parts per Billion
- 149. ppm: Parts per Million
- 150. PSI: Pounds per Square Inch
- 151. PSIA: Pounds per Square Inch Atmosphere
- 152. PSIG: Pounds per Square Inch Gauge
- 153. PTFE: Polytetrafluoroethylene
- 154. PVC: Polyvinyl Chloride
- 155. PVDF: Polyvinylidene Fluoride
- 156. RAD: Radians
- 157. RO: Reverse Osmosis
- 158. RPM: Revolutions Per Minute
- 159. RTD: Resistance Temperature Detectors
- 160. RTRP: Reinforced Thermosetting Resin Pipe
- 161. SAN: Sanitary Sewer
- 162. SCFM: Standard Cubic Feet per Minute
- 163. SDI: Silt Density Index
- 164. SMACNA: Sheet Metal and Air Conditioning Contractors National

Association Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 11 - 5

Bancroft Architects + Engineers

165. SPEC: Specification

166. SPS: Sterile Processing Services

167. SQFT/SF: Square Feet

168.SS: Stainless Steel

169. STD: Standard

170. SUS: Saybolt Universal Second

171. SWP: Steam Working Pressure

172. TD: Temperature Difference

173. TDH: Total Dynamic Head

174. TEFC: Totally Enclosed Fan-Cooled

175. TEMP: Temperature

176. TFE: Tetrafluoroethylene

177. THERM: 100,000 Btu

178. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire

179. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire

180. TIL: Technical Information Library
 http//www.cfm.va.gov/til/indes.asp

181. T/P: Temperature and Pressure

182. TYP: Typical

183. USDA: U.S. Department of Agriculture

184.V: Vent

185.V: Volt

186. VA: Veterans Administration

187. VA CFM: VA Construction & Facilities Management

188. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service

189. VAC: Vacuum

190. VAC: Voltage in Alternating Current

191. VAMC: Veterans Administration Medical Center

192. VHA OCAMES: This has been replaced by HEFP.

193. VSD: Variable Speed Drive

194. VTR: Vent through Roof

195.W: Waste

196. WAGD: Waste Anesthesia Gas Disposal

197.WC: Water Closet

198.WG: Water Gauge Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 11 - 6

06/02/2023

Bancroft Architects + Engineers

09-01-20

199. WOG: Water, Oil, Gas
200. WPD: Water Pressure Drop
201. WSFU: Water Supply Fixture Units

1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.

- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.

D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.

- E.Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- F.Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- G.Section 07 84 00, FIRESTOPPING.
- H.Section 07 92 00, JOINT SEALANTS.
- I. Section 22 07 11, PLUMBING INSULATION.
- J.Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
 - 1
- B.American Society for Testing and Materials (ASTM):
 - A36/A36M-2019.....Standard Specification for Carbon Structural Steel
 - A575-96(2013)e1.....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades
 - E84-2013a.....Standard Test Method for Surface Burning Characteristics of Building Materials
 - E119-2012a.....Standard Test Methods for Fire Tests of Building Construction and Materials
- C. International Code Council, (ICC):

IBC-2018.....International Building Code

- IPC-2018.....International Plumbing Code
- D.Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers 09-01-20 SP-58-2018.....Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application and Installation E.Military Specifications (MIL): P-21035B..... Galvanizing Repair (Metric) F. National Fire Protection Association (NFPA): 51B-2019..... During Welding, Cutting and Other Hot Work 54-2018.....National Fuel Gas Code 70-2020.....National Electrical Code (NEC) 99-2018.....Healthcare Facilities Code G.NSF International (NSF): Heat Recovery Equipment 14-2019......Plastic Piping System Components and Related Materials 61-2019.....Drinking Water System Components - Health Effects 372-2016..... Drinking Water System Components - Lead Content H. Department of Veterans Affairs (VA): PG-18-102014(R18).....Plumbing Design Manual PG-18-13-2017(R18).....Barrier Free Design Guide

1.4 SUBMITTALS

- A.Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. If the project is phased, contractors shall submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D.Contractor shall make all necessary field measurements and

investigations to assure that the equipment and assemblies will meet Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

09-01-20

contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- F.Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- H.Manufacturer's Literature and Data including: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.

2. Firestopping materials. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

09-01-20

- 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
- 4. Wall, floor, and ceiling plates.
- I.Coordination/Shop Drawings:
 - Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to 1 foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
 - 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
 - 4. In addition, for plumbing systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Interstitial space.
 - c. Hangers, inserts, supports, and bracing.
 - d. Pipe sleeves.
 - e. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- J.Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- K. Plumbing Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

 $22 \ 05 \ 11 \ - \ 10$

Bancroft Architects + Engineers

09-01-20

- 2. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- L. Provide copies of approved plumbing equipment submittals to the TAB and Commissioning Subcontractor.
- M. Submit training plans, trainer qualifications and instructor qualifications in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

1.5 OUALITY ASSURANCE

- A. Mechanical, electrical, and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional plumbing.
- B. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

09-01-20 located within 100 miles of the project. These organizations shall come to the site and provide acceptable service to restore operations within 4 hours of receipt of notification by phone, email or fax in event of an emergency, such as the shut-down of equipment; or within 24 hours in a non-emergency. Names, mail and email addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos is prohibited.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

```
09-01-20
```

- C.Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC, Section IX, "Welding and Brazing Qualifications". Provide proof of current certification to CO.
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the association code.
- D.Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- E.Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this

requirement and contract documents to COR for resolution. Failure of Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

09-01-20 the Contractor to resolve or call attention to any discrepancies or deficiencies to the COR will result in the Contractor correcting at no additional cost or time to the Government.

- 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
- 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
- 5. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- F.Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- G.Guaranty: Warranty of Construction, FAR clause 52.246-21.
- H.Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- I.Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

09-01-20

 Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
- Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
- 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 S-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - //As-built drawings are to be provided, with a copy of them on AutoCAD version 2018 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 09-01-20

 $22 \ 05 \ 11 \ - \ 16$

Bancroft Architects + Engineers

09-01-20

- C. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 65 degrees F minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- E. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.
- F. Temporary Facilities: Refer to Paragraph, TEMPORARY PIPING AND EQUIPMENT in this section.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

A. Steel pipe shall contain a minimum of 25 percent recycled content.

- B.Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372.
- C.In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- D.End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A.Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C.Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D.Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

A.Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 1/4 inch bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.B.All Equipment shall have moving parts protected from personal injury.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING (NOT USED)

2.7 VARIABLE SPEED MOTOR CONTROLLERS (NOT USED)

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A.Use symbols, nomenclature and equipment numbers specified, shown in the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B.Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
- C.Valve Tags and Lists:
 - Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 1/2 inch high for number designation, and not less than 1/4 inch for service designation on 19 gauge, 1-1/2 inches round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic-coated valve list card(s), sized 8-1/2 inches by 11 inches shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct Contractor where frames shall be mounted.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

```
09-01-20
```

4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color-coded sticker or thumb tack in ceiling or access door.

2.9 FIRESTOPPING

A.Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.10 GALVANIZED REPAIR COMPOUND

A.Mil. Spec. DOD-P-21035B, paint.

2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC.// Submittals based on the International Building Code (IBC) requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 500 pounds shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B.Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C.For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 4 inches thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 4 inches thick when approved by the COR for each job condition.
- D.For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 7/8 inch outside diameter.
- E.For Attachment to Wood Construction: Wood screws or lag bolts.
- F.Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 1-1/2 inches minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- G.Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 1-5/8 inches by 1-5/8 inches, No. 12 gauge, designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 200 pounds.
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 1/4 inch U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 1/2 inch galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- H.Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:

1) Hangers, clamps and other support material in contact with

tubing shall be painted with copper colored epoxy paint, Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 11 - 21

06/02/2023

Bancroft Architects + Engineers 09-01-20 copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.

- 2) For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
- 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending 1 inch beyond steel support or clamp. Spring Supports (Expansion and contraction of vertical piping):
 - 1) Movement up to 3/4 inch: Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - 2) Movement more than 3/4 inch: Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 118 gauge minimum.

I.Pre-insulated Calcium Silicate Shields:

- 1. Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
- 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
- 3. Shield thickness shall match the pipe insulation.
- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 11 - 22

06/02/2023

Bancroft Architects + Engineers

- a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
- b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.

2.12 PIPE PENETRATIONS

- A.Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C.To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 1 inch above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 1-1/2 inch angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 1-1/2 inch angle ring or square set in silicone adhesive around penetration.
- D.Penetrations are prohibited through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E.Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F.Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

- G.Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H.Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 1 inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 1 inch in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- J.Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- K.Pipe passing through roof shall be installed through a copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 8 inches from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 10 inches up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.13 TOOLS AND LUBRICANTS

- A.Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B.Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C.Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D.Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

 $22 \ 05 \ 11 \ - \ 24$

Bancroft Architects + Engineers

different application. Bio-based materials shall be utilized when possible.

2.14 WALL, FLOOR AND CEILING PLATES

- A.Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 3/32 inch for floor plates. For wall and ceiling plates, not less than 0.025 inch for up to 3 inch pipe, 0.035 inch for larger pipe.
- C.Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A.Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C.Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

Maintenance and operating space and access provisions that are shown in the drawings shall not be changed nor reduced.

- D.Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E.Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- F.Cutting Holes:
 - Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
 - 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G.Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean

fixtures, exposed materials and equipment. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

- I.Concrete and Grout: Concrete and shrink compensating grout 3000 psig minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- J.Gauges, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gauges shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- L.Domestic cold and hot water systems interface with the HVAC control system for the temperature, pressure and flow monitoring requirements to mitigate legionella. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC and Section 23 09 24, WATER QUALITY MONITORING.

M. Work in Existing Building:

- Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.

N.Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers' putty.
O.Inaccessible Equipment:

 Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to

the Government. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are prohibited in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A.Openings in building structures shall be planned to accommodate design scheme.
- B.Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C.All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D.Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.

E.Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

22 05 11 - 28

Bancroft Architects + Engineers

All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.

F.Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C.Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of (1/2 inch clearance between pipe or piping covering and adjacent work shall be provided.
- D.For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.

3.5 LUBRICATION

- A.All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B.All devices and equipment shall be equipped with required lubrication fittings. A minimum of 1 quart of oil and 1 pound of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR

in unopened containers that are properly identified as to application. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

22 05 11 - 29

Bancroft Architects + Engineers

- C.A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D.All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

E.All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A.Rigging access, other than indicated in the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided at no additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VAMC, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered.

Structural integrity of the building system shall be maintained. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/

22 05 11 - 30

06/02/2023

Bancroft Architects + Engineers

09-01-20 Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

- D.All valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.
- E.Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.7 CLEANING AND PAINTING

- A.Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material and Equipment shall NOT be painted:
 - a. Lubrication devices and grease fittings.
 - b. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - c. Valve stems and rotating shafts.
 - d. Pressure gauges and thermometers.
 - e. Glass.
 - f. Name plates.
 - 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- 4. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 5. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.8 IDENTIFICATION SIGNS

- A.Laminated plastic signs, with engraved lettering not less than 3/16 inch high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B.Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory-built equipment.
- C.Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

- A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.
- B. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and CxA. Provide a minimum of four weeks prior notice.

3.10 OPERATING AND PERFORMANCE TESTS

- A.Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09 - 01 - 20

Bancroft Architects + Engineers

tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. Perform tests as required for commissioning provisions in accordance with Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.11 OPERATION AND MAINTENANCE MANUALS

- A.All new and temporary equipment and all elements of each assembly shall be included.
- B.Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C.Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D.Lubrication instructions, type and quantity of lubricant shall be included.
- E.Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F.Set points of all interlock devices shall be listed.
- G.Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.12 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements

of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

B.Components provided under this section of the specification will be tested as part of a larger system.

3.13 DEMONSTRATION AND TRAINING

- A.Provide services of manufacturer's technical representative for 4hours/to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

Bancroft Architects + Engineers

09-01-20

SECTION 22 05 19 METERS AND GAUGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for water meters and gauges primarily used for troubleshooting the system and to indicate system performance.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Requirements for commissioning, systems readiness checklist, and training.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B40.100-2013.....Pressure Gauges and Gauge Attachments B40.200-2008.....Thermometers, Direct Reading and Remote Reading
- C. American Water Works Association (AWWA):

C700-2015..... Cold Water Meters, Displacement Type, Bronze Main Case

C701-2015.....Cold Water Meters-Turbine Type, for Customer Service

C702-20115.....Cold Water Meters - Compound Type

C707-2010 (R2016).....Encoder-Type Remote-Registration Systems for Cold-Water Meters

D. Institute of Electrical and Electronics Engineers (IEEE):

C2-2017.....National Electrical Safety Code (NESC) Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 19 - 1

06/02/2023

Bancroft Architects + Engineers

E. International Code Council (ICC):

- 09-01-20
- IPC-2018..... Code Code
- F. National Fire Protection Association (NFPA): 70-2020.....National Electrical Code (NEC)
- G. NSF International (NSF): 61-2019.....Drinking Water System Components - Health Effects

372-2016.....Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 19, METERS AND GAUGES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pressure Gauges.
 - 2. Thermometers.
 - 3. Product certificates for each type of meter and gauge.
- D. Complete operating and maintenance manual shall including wiring diagrams, technical data sheets, information for ordering replaceable parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the system.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- E. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of

Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. Contract No. 36C26319D0022 Station Project No. 656-19-039

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

PART 2 -PRODUCTS

- 2.1 DISPLACEMENT WATER METER (NOT USED) TURBINE WATER METER (NOT USED)
- 2.2 COMPOUND WATER METER (NOT USED)
- 2.3 WATER METER STRAINER (NOT USED)
- 2.4 WATER METER PROGRAMMING (NOT USED)
- 2.5 WATER METER COMMUNICATION PROTOCOL (NOT USED)
- 2.6 REMOTE READOUT REGISTER (NOT USED)

2.7 PRESSURE GAUGES FOR WATER AND SEWAGE USAGE

- A. ASME B40.100 all metal case 4-1/2 inches diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 200 psig gauge.
- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psig.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.
- H. The pressure gauge for water domestic use shall conform to NSF 61 and NSF 372.

2.8 THERMOMETERS

A. Thermometers shall be straight stem, metal case, red liquid-filled thermometer, approximately 7 inches high, 40 degrees F to 212 degrees F. Thermometers shall comply with ASME B40.200.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Direct mounted pressure gauges shall be installed in piping tees with pressure gauge located on pipe at the most readable position.
- B. Valves and snubbers shall be installed in piping for each pressure gauge.
- C. Test plugs shall be installed on the inlet and outlet pipes of all heat exchangers or water heaters serving more than one plumbing fixture.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

09-01-20

- D. Pressure gauges shall be installed where indicated in the drawings and at the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure reducing valve.
 - 3. Suction and discharge of each domestic water pump or re-circulating hot water return pump.
- E. Thermometers shall be installed on the water heater inlet and outlet piping, thermostatic mixing valve outlet piping, and the hot water circulation pump inlet piping.
- F. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD QUALITY CONTROL

A. The meter assembly shall be visually inspected and operationally tested. The correct multiplier placement on the face of the meter shall be verified.

3.3 STARTUP AND TESTING

- B. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- C. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- D. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- E. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Components provided under this section of the specification will be tested as part of a larger system.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

3. 5DEMONSTRATION AND TRAINING

- G. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- H. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

Bancroft Architects + Engineers

09-01-20

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Sanitary Engineering (ASSE):

1001-2017.....Performance Requirements for Atmospheric Type Vacuum Breakers

1003-2009.....Performance Requirements for Water Pressure Reducing Valves for Domestic Water Distribution Systems

1011-2017.....Performance Requirements for Hose Connection Vacuum Breakers

1013-2011.....Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers

1015-2011.....Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check

Fire Protection Backflow Prevention Assemblies

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 23 - 1

06/02/2023

Bancroft Architects + Engineers 09-01-20 1017-2009..... Performance Requirements for Temperature Actuated Mixing Valves for Hot Water Distribution Systems 1020-2004.....Performance Requirements for Pressure Vacuum Breaker Assembly 1035-2008.....Performance Requirements for Laboratory Faucet Backflow Preventers 1069-2005.....Performance Requirements for Automatic Temperature Control Mixing Valves 1070-2015.....Performance Requirements for Water Temperature Limiting Devices 1071-2012..... Performance Requirements for Temperature Actuated Mixing Valves for Plumbed Emergency Equipment C. American Society for Testing and Materials (ASTM): A126-2004(R2019).....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A276/A276M-2017.....Standard Specification for Stainless Steel Bars and Shapes A536-1984(R2019e).....Standard Specification for Ductile Iron Castings B62-2017.....Standard Specification for Composition Bronze or Ounce Metal Castings B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications D. International Code Council (ICC): IPC-2018.....International Plumbing Code E. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-2018.....Standard Marking Systems for Valves, Fittings, Flanges and Unions SP-67-2017.....Butterfly Valves SP-70-2011.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2018.....Gray Iron Swing Check Valves, Flanged and Threaded Ends Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 $22 \ 05 \ 23 \ - \ 2$

Bancroft Architects + Engineers 09-01-20 SP-80-2019.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2011.....Gray Iron Globe & Angle Valves, Flanged and Threaded Ends SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends F. National Environmental Balancing Bureau (NEBB): 8th Edition 2015 Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems G. NSF International (NSF):

61-2019..... Drinking Water System Components - Health Effects

372-2016.....Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Gate Valves.
 - 3. Butterfly Valves.
 - 4. Balancing Valves.
 - 5. Check Valves.
- D. Test and Balance reports for balancing valves.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts and troubleshooting guide:

1. Include complete list indicating all components of the systems. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 23 - 3

06/02/2023

Bancroft Architects + Engineers

- 2. Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- 4. Piping diagrams of thermostatic mixing valves to be installed.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large values. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

1.6 AS BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing greater than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 2 inch stem extensions and extended handles of non-thermal conductive material that allows

operating the valve without breaking the vapor seal or disturbing the Contract No. 36C26319D0022 Station Project No. 656-19-039

Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

insulation. Memory stops shall be fully adjustable after insulation is applied.

- D. Exposed Valves over 2-1/2 inches installed at an elevation over 12 feet shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 2 inches and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 150 psig and a CWP rating of 600 psig. The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.
 - 2. Less than 4 inches: Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 200 psig. The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A536, ductile iron.
 - 3. 4 inches and greater:
 - a. Class 125, OS&Y, Cast Iron Gate Valve. The gate valve shall meet MSS SP-70 type I standard. The gate valve shall have a CWP rating of 1380 200 psig. The valve materials shall meet ASTM A126, grey iron with bolted bonnet, flanged ends, bronze trim, and positiveseal resilient solid wedge disc. The gate valve shall be gear operated for sizes under 8 inches and crank operated for sizes 8 inches and greater.
 - b. Single flange, ductile iron butterfly valves: The single flanged butterfly valve shall meet the MSS SP-67 standard. The butterfly valve shall have a CWP rating of 200 psig. The butterfly valve shall be lug type, suitable for bidirectional dead-end service at rated pressure without use of downstream flange. The body material shall comply with ASTM A536 ductile iron. The seat shall

be EPDM with stainless steel disc and stem. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

09-01-20

c. Grooved end, ductile iron butterfly valves. The grooved butterfly valve shall meet the MSS SP-67 standard. The grooved butterfly valve shall have a CWP rating of 200 psig The valve materials shall be epoxy coated ductile iron conforming to ASTM A536 with two-piece stainless-steel stem, EPDM/encapsulated ductile iron disc, and EPDM seal. The butterfly valve shall be gear operated.

2.3 MANUAL BALANCING VALVES

- A. Hot Water Re-circulating, 3 inches and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitted with internal EPT inserts and check valves. The valve body shall have 1/4 inch NPT tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.
- B. Greater than 3 inches: Manual balancing valves shall be of heavy duty cast iron flanged construction with 125 psig flange connections. The flanged manual balancing valves shall have either a brass ball with glass and carbon filled TFE seal rings or fitted with a bronze seat, replaceable bronze disc with EPDM seal insert and stainless steel stem. The design pressure shall be 175 psig at 250 degrees F.

2.4 THERMOSTATIC BALANCING VALVES (NOT USED)

2.5 CHECK VALVES

- A. 3 inches and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 200 psig. The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.
- B. 4 inches and greater:
 - Check valves shall be Class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 200

psig. The check valve shall have a clear or full waterway body Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/0

22 05 23 - 6

06/02/2023

Bancroft Architects + Engineers

\$09-01-20\$ design with gray iron body material conforming to ASTM A126, bolted bonnet, flanged ends, bronze trim.

2. All check valves on the discharge side of submersible sump pumps shall have factory installed exterior level and weight with sufficient weight to prevent the check valve from hammering against the seat when the sump pump stops.

2.6 GLOBE VALVES

- A. 3 inches or smaller: Class 150, bronze globe valve with non-metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 300 psig. The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B62 with solder ends, copper-silicon bronze stem, PTFE or TFE disc, and malleable iron hand wheel.
- B. Greater than 3 inches: Similar to above, except with cast iron body and bronze trim, Class 125, iron globe valve. The globe valve shall meet MSS SP-85, Type 1 standard. The globe valve shall have a CWP rating of 200 psig. The valve material shall be gray iron with bolted bonnet conforming to ASTM A126 with flanged ends, bronze trim, and malleable iron handwheel.

2.7 WATER PRESSURE REDUCING VALVE AND CONNECTIONS (NOT USED)

2.8 BACKWATER VALVE (NOT USED)

2.9 BACKFLOW PREVENTERS (NOT USED)

2.10 CHAINWHEELS (NOT USED)

2.11 THERMOSTATIC MIXING VALVES

- A. Thermostatic Mixing Valves shall comply with the following general performance requirements:
 - 1. Shall meet ASSE requirements for water temperature control.
 - The body shall be cast bronze or brass with corrosion resistant internal parts preventing scale and biofilm build-up. Provide chrome-plated finish in exposed areas.
 - No special tool shall be required for temperature adjustment, maintenance, replacing parts and disinfecting operations.
 - 4. Valve shall be able to be placed in various positions without making temperature adjustment or reading difficult.
 - 5. Valve finish shall be chrome plated in exposed areas.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 05 23 - 7

06/02/2023

Bancroft Architects + Engineers

6. Valve shall allow easy temperature adjustments to allow hot water circulation. Internal parts shall be able to withstand disinfecting operations of chemical and thermal treatment of water temperatures up to 180°F for 30 minutes or 50 ppm chlorine residual concentration for 24 hours.

- 7. Parts shall be easily removed or replaced without dismantling the valves, for easy scale removal and disinfecting of parts.
- 8. Valve shall have a manual adjustable temperature control with locking mechanism to prevent tampering by end user. Outlet temperature shall be visible to ensure outlet temperature does not exceed specified limits, particularly after thermal eradication procedures.
- 9. Provide mixing valves with integral check valves with screens and stop valves.
- B. Water Temperature Limiting Devices:
 - Application: Single plumbing fixture point-of-use such as sinks or lavatories.
 - 2. Standard: ASSE 1070.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 110 degrees F.
 - 5. Connections: Threaded union, compression or soldered inlets and outlet.
 - Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Install chain wheels on operators for butterflygate and globe valves 4 inches and greater and installed greater than 10 feet above floor. Chains shall be extended to 60 inches above finished floor.
- F. Check valves shall be installed for proper direction of flow and as follows:
 - Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- G. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that shall be sources of contamination. Comply with authorities having jurisdiction. Locate backflow preventers in same room as connected equipment or system.
 - Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are prohibited for this application.
 - 2. Install thermometers if specified.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

Bancroft Architects + Engineers

- Install cabinet-type units recessed in or surface mounted on wall as specified.
- H. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- I. Install thermostatic balancing valves with inlet strainer and inlet and outlet isolation valves.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:1. Calibrated balancing valves.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

3.5 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 09-01-20

Bancroft Architects + Engineers

09-01-20

C. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

s- - E N D - - -

Bancroft Architects + Engineers

09-01-19

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.
 - Re-insulation of plumbing piping and equipment after asbestos abatement and or replacement of any part of existing insulation system (insulation, vapor retarder jacket, protective coverings/jacket) damaged during construction.
- B. Definitions:
 - 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
 - Cold: Equipment or piping handling media at design temperature of 60 degrees F or below.
 - 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 7. FSK: Foil-scrim-Kraft facing.
 - Hot: Plumbing equipment or piping handling media above 104 degrees
 F.
 - 9. Density: Pcf pounds per cubic foot.

Bancroft Architects + Engineers

- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.
- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Insulation material and insulation production method.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- F. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- H. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Hot and cold water piping.
- I. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- J. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

K. Section 23 21 13, HYDRONIC PIPING: electrical heat tracing systems. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

A. The publications listed below form a part of this specification to the

1.3 APPLICABLE PUBLICATIONS

extent referenced. The publications are referenced in the text by basic designation only. B. American Society for Testing and Materials (ASTM): B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011.....Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-2007 (R2013).....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C450-2008 (R2014).....Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging Adjunct to C450.....Compilation of Tables that Provide Recommended Dimensions for Prefab and Field Thermal Insulating Covers, etc. C552-2014.....Standard Specification for Cellular Glass Thermal Insulation C553-2013.....Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications C680-2014.....Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs C1136-2012.....Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation E84-2015a.....Standard Test Method for Surface Burning Characteristics of Building Materials E2231-2015.....Standard Practice for Specimen Preparation and Mounting of Pipe and Duct Insulation to Assess Surface Burning Characteristics Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

22 07 11 - 3

09-01-19

Bancroft Architects + Engineers 09-01-19 C. Federal Specifications (Fed. Spec.): L-P-535E-1979.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. D. International Code Council, (ICC): IMC-2012.....International Mechanical Code E. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-1990....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (2)-1987...Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-PRF-19565C (1)-1988.Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass F. National Fire Protection Association (NFPA): 90A-2015.....Standard for the Installation of Air-Conditioning and Ventilating Systems G. Underwriters Laboratories, Inc (UL): 723-2008 (R2013) Standard for Test for Surface Burning Characteristics of Building Materials 1887-2004 (R2013).....Standard for Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics

H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; https://insulationinstitute.org/toolsresources/

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

materials, applications, standard compliance, model numbers, size, and capacity.

- D. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
 - e. Make reference to applicable specification paragraph numbers for coordination.
 - f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through
 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:

4.3.3.1 Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.

4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 09 - 01 - 19

Bancroft Architects + Engineers

09-01-19

service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.

- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 75 degrees F mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2018 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (nominal 1 pcf), k = 0.045 (0.31) Class B-5, Density 32 kg/m³ (nominal 2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 75 degrees F, for use at temperatures

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09 - 01 - 19

Bancroft Architects + Engineers

up to 446 degrees F with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

- 2.2 MINERAL WOOL OR REFRACTORY FIBER (NOT USED)
- 2.3 RIGID CELLULAR PHENOLIC FOAM (NOT USED)
- 2.4 CELLULAR GLASS CLOSED-CELL (NOT USED)
- 2.5 POLYISOCYANURATE CLOSED-CELL RIGID (NOT USED)
- 2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL (NOT USED)
- 2.7 CALCIUM SILICATE (NOT USED)

2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 1 mil thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 1-1/2 inch lap on longitudinal joints and minimum 3 inch butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature/ The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 30 inch-pounds for interior locations and 80 inch-pounds for exterior or exposed locations or where the insulation is subject to damage.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 09 - 01 - 19

Bancroft Architects + Engineers

- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 30 inch-pounds for interior locations and 80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- F. Glass Cloth Jackets: Presized, minimum 7.8 ounces per square yard, 300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.03 inches. Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 3.0 pcf.

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
Up through 5	6 long			

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 09 - 01 - 19

Bancroft Architects + Engineers

09-01-19

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
6	6 long			
8,	9 long			

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 300 degrees F), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.10 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 18 gage soft annealed galvanized or 14 gage copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 1/2 inch nominal width, brass, galvanized steel, aluminum or stainless steel.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: one inch mesh, 22 gage galvanized steel.
- E. Corner beads: 2 inch by 2 inch), 26 gage galvanized steel; or, 1 inch by 1 inch, 28 gage aluminum angle adhered to 2 inch by 2 inch Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 50 to 250 degrees F. Below 10 degrees C 50 degrees F and above 250 degrees F provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.13 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.

Bancroft Architects + Engineers

- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- E. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 60 degrees) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 6 inches.
- F. Install vapor stops with operating temperature 60 degrees F and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every approx. 15 to 20 feet)of pipe insulation. The annular space between the pipe and pipe insulation of approx. 1 inch in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
- G. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 20 gage galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
- H. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about

coating's maximum temperature limit) or jacket material. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09 - 01 - 19

Bancroft Architects + Engineers

- I. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- J. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - 4. Distilled water piping.
- K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- M. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- N. Freeze protection of above grade outdoor piping (over heat tracing tape): 3/4 inch) thick insulation, for all pipe sizes 3 inchesand smaller and 1 inch thick insulation for larger pipes. Provide metal jackets for all pipe insulations. Provide freeze protection for cold water make-up piping and equipment where indicated on the drawings as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 09 - 01 - 19

Bancroft Architects + Engineers

09-01-19

- O. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - 2. All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperaturein high humidity locations.
- P. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. Piping exposed in building, within 6 feet of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets except for cold pipe or tubing applications. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- Q. Provide PVC jackets over insulation as follows:
 - 1. Piping exposed in building, within 6 feet of the floor, on piping that is not precluded in previous sections.
 - 2. A 2 inch jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

- 1. Vapor retarder faced board: Apply board on pins spaced not more than 12 inches) on center each way, and not less than 3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. (Biobased materials shall be utilized when possible.) Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
- 2. Plain unfaced board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 9 inches on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 1 inch mesh wire, with edges wire

laced together, over insulation and finish with insulating and Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

 $22 \ 07 \ 11 \ - \ 14$

Bancroft Architects + Engineers

\$09-01-19\$ finishing cement applied in one coat, 1/4 inch thick, trowelled to a smooth finish.

- c. For cold equipment: Apply meshed glass fabric in a tack coat 60 to 70 square feet per gallon of vapor mastic and finish with mastic at 12 to 15 square feet per gallon over the entire fabric surface.
- 3. Cold equipment: 1-1/2inch) thick insulation faced with vapor retarder ASJ or FSK. Seal all facings, laps, and termination points and do not use staples or other attachments that may puncture ASJ or FSK.
 - a. Water filter, chemical feeder pot or tank.
 - b. Pneumatic, cold storage water and surge tanks.
- Hot equipment: 1-1/2 inch thick insulation faced with unsealed ASJ or FSK.
 - a. Domestic water heaters and hot water storage tanks (not factory insulated).
 - b. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 40 degrees F to 250 degrees F. Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures

below 40 degrees F). Secure first layer of mineral fiber Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06

22 07 11 - 15

Bancroft Architects + Engineers

\$09-01-19\$ insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.

- c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 60 degrees F or less, vapor seal with a layer of glass fitting tape imbedded between two 1/16 inch coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 2 inches.
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)							
		Nominal Pipe Size Millimeters			(Inches)		
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Greater		
<pre>(4-15 degrees C (40-60 degrees F) (//Ice water piping//)</pre>	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)		
<pre>4-15 degrees C (40-60 degrees F) (//Ice water piping//</pre>	Cellular Glass Thermal	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)		

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

SECTION 22 08 00

11-1-16

COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and

Bancroft Architects + Engineers

11-1-16

of Division 22, is required in cooperation with the VA and the Commissioning Agent.

B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist

Bancroft Architects + Engineers

11-1-16

to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. . All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Contracting Officer's Representative. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

Bancroft Architects + Engineers

11-1-16

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Contracting Officer's Representative and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the Contracting Officer's Representative after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

----- END -----

Bancroft Architects + Engineers

05-01-21

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING.
- F. Section 07 92 00, JOINT SEALANTS.
- G. Section 09 91 00, PAINTING.
- I. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- J. Section 22 07 11, PLUMBING INSULATION.
- K. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B16.3-2011......Malleable Iron Threaded Fittings: Classes 150 and 300

B16.9-2012......Factory-Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings B16.15-2013Cast Copper Alloy Threaded Fittings: Classes 125 and 250 B16.18-2012.....Cast Copper Alloy Solder Joint Pressure

Fittings

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

22 11 00 - 1

Bancroft Architects + Engineers 05-01-21 B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 ASME Boiler and Pressure Vessel Code -BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications C. American Society of Sanitary Engineers (ASSE): 1010-2004......Performance Requirements for Water Hammer Arresters D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A269/A269M-2014e1.....Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-2015.....Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes A403/A403M-2014.....Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings A536-1984 (R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-2008 (R2014).....Standard Specification for Solder Metal B43-2014.....Standard Specification for Seamless Red Brass Pipe, Standard Sizes

Bancroft Architects + Engineers 05-01-21 B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014.....Standard Specification for Seamless Copper Water Tube B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications B687-1999 (R2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples C919-2012.....Standard Practice for Use of Sealants in Acoustical Applications D2000-2012.....Standard Classification System for Rubber Products in Automotive Applications E1120-2008.....Standard Specification for Liquid Chlorine E1229-2008..... Standard Specification for Calcium Hypochlorite C651-2014.....Disinfecting Water Mains F. American Welding Society (AWS): A5.8M/A5.8-2011-AMD1....Specification for Filler Metals for Brazing and Braze Welding G. International Code Council (ICC): IPC-2012.....International Plumbing Code H. Manufacturers Specification Society (MSS): SP-58-2009......Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application, and Installation SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends I. NSF International (NSF): 14-2015..... Plastics Piping System Components and Related Materials Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

22 11 00 - 3

Bancroft Architects + Engineers 05-01-21 61-2014a.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content

- J. Plumbing and Drainage Institute (PDI): PDI-WH 201-2010.....Water Hammer Arrestors
- K. Department of Veterans Affairs: H-18-10.....Plumbing Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

1. All items listed in Part 2 - Products.

- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.

Bancroft Architects + Engineers

B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.

05 - 01 - 21

C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.

1.6 spare parts

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be // in electronic version on compact disc or DVD // inserted into a threering binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2018provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

05-01-21 shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.

2.2 UNDERGROUND WATER SERVICE CONNECTIONS TO BUILDINGS (NOT USED)

2.3 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn. For pipe 6 inches and larger, stainless steel, ASTM A312, schedule 10 40 shall be used.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.

2.4 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment, and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: ASTM B43, standard weight.
 - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
 - 3. Nipples: ASTM B687, Chromium-plated.
 - Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 2-1/2 inches and larger shall be flange type with approved gaskets.

Bancroft Architects + Engineers

B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

05 - 01 - 21

2.5 ETHYLENE OXIDE (ETO) STERILIZER WATER SUPPLY PIPING (NOT USED)

2.6 TRAP PRIMER WATER PIPING

- A. Pipe: Copper tube, ASTM B88, type K, hard drawn.
- B. Fittings: Bronze castings conforming to ASME B16.18 Solder joints.
- C. Solder: ASTM B32 alloy type Sb5. Provide non-corrosive flux.

2.7 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 3 inches, brass or bronze; 3 inches and greater, cast iron or semi-steel.

2.8 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.9 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1229.
- B. Liquid Chlorine: ASTM E1120.

2.10 WATER HAMMER ARRESTER

- A. Closed copper tube chamber with permanently sealed 60 psig air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements. Provide water hammer arrestors at:
 - 1. All solenoid valves.
 - 2. All groups of two or more flush valves.
 - 3. All quick opening or closing valves.
 - 4. All medical washing equipment.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

22 11 00 - 7

Bancroft Architects + Engineers

05-01-21

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - All pipe runs shall be laid out to avoid interference with other work/trades.
 - Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
 - 8) Rollers: Cast iron.

Bancroft Architects + Engineers

 Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.

05-01-21

- 10) Hangers and supports utilized with insulated pipe and tubing shall have 180-degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
- 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 20 feet for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.
- 6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the firestopping materials.

Bancroft Architects + Engineers

05 - 01 - 21

- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- B. Domestic Water piping shall conform to the following:
 - Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot and cold water circulating lines with no traps.
 - Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 150 psig gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- C. Re-agent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 200 psig gage during inspection and prove tight.
- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

Bancroft Architects + Engineers

05-01-21

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

Bancroft Architects + Engineers

09-01-20

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- F. Section 07 92 00, JOINT SEALANTS: Sealant products.
- G. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- I. Section 22 07 11, PLUMBING INSULATION.
- J. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007.....Identification of Piping Systems A112.36.2M-1991....Cleanouts A112.6.3-2019.....Floor and Trench Drains B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.1-2015.....Gray Iron Pipe Flanges and Flanged Fittings Classes 25, 125, and 250

B16.4-2016.....Grey Iron Threaded Fittings Classes 125 and 250 Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

22 13 00 - 1

Bancroft Architects + Engineers 09-01-20 B16.15-2018.....Cast Copper Alloy Threaded Fittings, Classes 125 and 250 B16.18-2018.....Cast Copper Alloy Solder Joint Pressure Fittings B16.21-2016.....Nonmetallic Flat Gaskets for Pipe Flanges B16.22-2018.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2016.....Cast Copper Alloy Solder Joint Drainage Fittings: DWV B16.24-2016.....Cast Copper Alloy Pipe Flanges and Flanged Fittings, and Valves: Classes 150, 300, 600, 900, 1500, and 2500 B16.29-2017.....Wrought Copper and Wrought Copper Alloy Solder-Joint Drainage Fittings: DWV B16.39-2014.....Malleable Iron Threaded Pipe Unions Classes 150, 250, and 300 B18.2.1-2012......Square, Hex, Heavy Hex, and Askew Head Bolts and Hex, Heavy Hex, Hex Flange, Lobed Head, and Lag Screws (Inch Series) C. American Society of Sanitary Engineers (ASSE): 1001-2017..... Performance Requirements for Atmospheric Type Vacuum Breakers 1018-2001..... Performance Requirements for Trap Seal Primer Valves - Potable Water Supplied 1044-2015..... Performance Requirements for Trap Seal Primer Devices - Drainage Types and Electronic Design Types 1079-2012.....Performance Requirements for Dielectric Pipe Unions D. American Society for Testing and Materials (ASTM): A53/A53M-2018.....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated, Welded and Seamless A74-2017.....Standard Specification for Cast Iron Soil Pipe and Fittings

Bancroft Architects + Engineers 09-01-20 A888-2018a.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications B32-2008 (R2014) Standard Specification for Solder Metal B43-2015.....for Seamless Red Brass Pipe, Standard Sizes B88-2016.....Standard Specification for Seamless Copper Water Tube B306-2013.....Standard Specification for Copper Drainage Tube (DWV) B687-1999(R2016).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples B813-2016..... Standard Specification for Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube B828-2016.....Standard Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings C564-2014.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings E. Cast Iron Soil Pipe Institute (CISPI): 2006......Cast Iron Soil Pipe and Fittings Handbook 301-2012......Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-2012..... Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications F. Copper Development Association, Inc. (CDA): A4015-14/19.....Copper Tube Handbook G. International Code Council (ICC): IPC-2018.....International Plumbing Code H. Manufacturers Standardization Society (MSS): SP-123-2018.....Non-Ferrous Threaded and Solder-Joint Unions for Use with Copper Water Tube Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 22 13 00 - 3

Bancroft Architects + Engineers

09-01-20

- I. National Fire Protection Association (NFPA): 70-2020.....National Electrical Code (NEC)
- J. Underwriters' Laboratories, Inc. (UL): 508-99 (R2013).....Standard For Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. cleanouts.
 - 4. Trap Seal Protection.
 - 5. Penetration Sleeves.
 - 6. Pipe Fittings.
 - 7. Traps.
 - 8. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the CXA and completed by the Contractor, signed by a qualified technician and dated on the

Bancroft Architects + Engineers

date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

G. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Refer to Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for additional sustainable design requirements.

1.6 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

A. Cast iron waste, drain, and vent pipe and fittings.

- Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Interior waste and vent piping above grade.
- 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
- 4. Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
- 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

2.2 PUMP DISCHARGE PIPING (NOT USED)

2.3 EXPOSED WASTE PIPING

A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other

sections. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

22 13 00 - 5

Bancroft Architects + Engineers

- 1. The Pipe shall meet ASTM B43, regular weight.
- 2. The Fittings shall conform to ASME B16.15.
- 3. Nipples shall conform to ASTM B687, Chromium-plated.
- 4. Unions shall be brass or bronze with chrome finish. Unions 2-1/2 inches and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens,
- Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.4 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 125 psig at a minimum temperature of 180 degrees F. The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 150 psig. The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 300 psig at 225 degrees F. The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.5 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 4 inches; and not less than 4 inches for larger pipe. Cleanouts shall be easily

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

22 13 00 - 6

Bancroft Architects + Engineers

accessible and shall be gastight and watertight. Minimum clearance of 24 inches shall be provided for clearing a clogged sanitary line.

- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 2 inches. When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated in the contract document and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 24 inchesabove the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 6 by 6 inches shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

09-01-20

2.6 FLOOR DRAINS

- A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening shall not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drain pipe. For drains not installed in connection with a waterproof membrane, a flashing membrane, 24 inchessquare or another approved waterproof membrane shall be provided.
- B. FD-1 & FD-2 Type B (FD-B) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type B floor drain shall be constructed of galvanized cast iron with medium duty nickel bronze grate, double drainage pattern, clamping device, without sediment bucket but with secondary strainer in bottom for large debris. The grate shall be 7 inches minimum.

2.7 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are prohibited on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.8 PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS

- A. Trap Primer (TP-2): The trap seal primer valve shall be hydraulic, supply type with a pressure rating of 861 kPa (125 psig) and conforming to standard ASSE 1018.
 - 1. The inlet and outlet connections shall be 15 mm or DN15 (NPS 1/2 inch)
 - 2. The trap seal primer valve shall be fully automatic with an all brass or bronze body.

Bancroft Architects + Engineers

- 3. The trap seal primer valve shall be activated by a drop in building water pressure, no adjustment required.
- The trap seal primer valve shall include a manifold when serving two, three, or four traps.
- 5. The manifold shall be omitted when serving only one trap.

2.9 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that shall extend 2 inches above finished floor and galvanized steel pipe extension in the bottom of the fitting that shall extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

09-01-20

22 13 00 - 9

Bancroft Architects + Engineers

two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow greater than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

- J. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- K. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar

metal piping and tubing. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

22 13 00 - 10

Bancroft Architects + Engineers

09-01-20

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 inch to NPS 2 inch: 60 inches with 3/8 inch rod.
 - 2. NPS 3 inch: 60 inches with 1/2 inch rod.
 - 3. NPS 4 inch to NPS 5 inch: 60 inches5/8 inch)rod.
- E. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser clamps shall be malleable iron or steel.
 - 7. Rollers shall be cast iron.
 - 8. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- F. Miscellaneous materials shall be provided as specified, required, directed or as noted in the contract documents for proper installation

of hangers, supports and accessories. If the vertical distance exceeds Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

22 13 00 - 11

Bancroft Architects + Engineers

09-01-20 20 feet for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.

- G. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- H. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- I. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 10 foot head of water. In testing successive sections, test at least upper 10 feet of next preceding section so that each joint or pipe except upper most 10 feet of system has been submitted to a test of at least a 10 foot head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

 $22 \ 13 \ 00 \ - \ 12$

Bancroft Architects + Engineers

- For an air test, an air pressure of 35 psig gauge shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gauge shall be used for the air test.
- 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
- 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1 inch of water with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 2 ounces of peppermint into each line or stack.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification shall be tested as part of a larger system.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

DIVISION 23

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ac: Alternating Current
 - 2. AC: Air Conditioning
 - 3. ACU: Air Conditioning Unit
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. ASJ: All Service Jacket
 - 8. AWG: American Wire Gauge
 - 9. BACnet: Building Automation and Control Networking Protocol
 - 10. BAS: Building Automation System
 - 11. bhp: Brake Horsepower
 - 12. Btu: British Thermal Unit
 - 13. Btu/h: British Thermal Unit Per Hour
 - 14. CDA: Copper Development Association
 - 15. C: Celsius
 - 16. CD: Compact Disk
 - 17. CFM: Cubic Foot Per Minute
 - 18. CH: Chilled Water Supply
 - 19. CHR: Chilled Water Return
 - 20. CLR: Color
 - 21. COR: Contracting Officer's Representative
 - 22. CPVC: Chlorinated Polyvinyl Chloride
 - 23. CRS: Corrosion Resistant Steel
 - 24. CTPD: Condensate Transfer Pump Discharge

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

- 25. CTPS: Condensate Transfer Pump Suction
- 26. CW: Cold Water
- 27. CWP: Cold Working Pressure
- 28. CxA: Commissioning Agent
- 29. dB: Decibels
- 30. dB(A): Decibels (A weighted)
- 31. DDC: Direct Digital Control
- 32. DI: Digital Input
- 33. DO: Digital Output
- 34. DVD: Digital Video Disc
- 35. DN: Diameter Nominal
- 36. DWV: Drainage, Waste and Vent
- 37. EPDM: Ethylene Propylene Diene Monomer
- 38. EPT: Ethylene Propylene Terpolymer
- 39. ETO: Ethylene Oxide
- 40. F: Fahrenheit
- 41. FAR: Federal Acquisition Regulations
- 42. FD: Floor Drain
- 43. FED: Federal
- 44. FG: Fiberglass
- 45. FSK: Foil-Scrim-Kraft facing
- 46. GC: Chilled Glycol Water Supply
- 47. GCR: Chilled Glycol Water Return
- 48. GH: Hot Glycol Water Heating Supply
- 49. GHR: Hot Glycol Water Heating Return
- 50. gpm: Gallons Per Minute
- 51. HDPE: High Density Polyethylene
- 52. Hg: Mercury
- 53. HOA: Hands-Off-Automatic
- 54. hp: Horsepower
- 55. HPS: High Pressure Steam (414 kPa (60 psig) and above)
- 56. HPR: High Pressure Steam Condensate Return
- 57. HW: Hot Water
- 58. HWH: Hot Water Heating Supply
- 59. HWHR: Hot Water Heating Return

60. Hz: Hertz Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

61. ID: Inside Diameter

- 62. IPS: Iron Pipe Size
- 63. kg: Kilogram
- 64. klb: 1000 lb
- 65. kPa: Kilopascal
- 66. lb: Pound
- 67. lb/hr: Pounds Per Hour
- 68. L/s: Liters Per Second
- 69. L/min: Liters Per Minute
- 70. LPS: Low Pressure Steam (103 kPa (15 psig) and below)
- 71. LPR: Low Pressure Steam Condensate Gravity Return
- 72. MAWP: Maximum Allowable Working Pressure
- 73. MAX: Maximum
- 74. MBtu/h: 1000 Btu/h
- 75. MBtu: 1000 Btu
- 76. MED: Medical
- 77. m: Meter
- 78. MFG: Manufacturer
- 79. mg: Milligram
- 80. mg/L: Milligrams Per Liter
- 81. MIN: Minimum
- 82. MJ: Megajoules
- 83. ml: Milliliter
- 84. mm: Millimeter
- 85. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60
 psig))
- 86. MPR: Medium Pressure Steam Condensate Return
- 87. MW: Megawatt
- 88. NC: Normally Closed
- 89. NF: Oil Free Dry (Nitrogen)
- 90. Nm: Newton Meter
- 91. NO: Normally Open
- 92. NOx: Nitrous Oxide
- 93. NPT: National Pipe Thread
- 94. NPS: Nominal Pipe Size

95. OD: Outside Diameter Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

96. OSD: Open Sight Drain 97. OS&Y: Outside Stem and Yoke 98. PC: Pumped Condensate 99. PID: Proportional-Integral-Differential 100. PLC: Programmable Logic Controllers 101. PP: Polypropylene 102. PPE: Personal Protection Equipment 103. ppb: Parts Per Billion 104. ppm: Parts Per Million 105. PSIA: Pounds Per Square Inch Absolute 106. psig: Pounds Per Square Inch Gauge 107. PVC: Polyvinyl Chloride 108. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White 109. PVDF: Polyvinylidene Fluoride 110. rad: Radians 111. RH: Relative Humidity 112. RO: Reverse Osmosis 113. rms: Root Mean Square 114. RPM: Revolutions Per Minute 115. RS: Refrigerant Suction 116. RTD: Resistance Temperature Detectors 117. RTRF: Reinforced Thermosetting Resin Fittings 118. RTRP: Reinforced Thermosetting Resin Pipe 119. SCFM: Standard Cubic Feet Per Minute 120. SPEC: Specification 121. SPS: Sterile Processing Services 122. STD: Standard 123. SDR: Standard Dimension Ratio 124. 125. 126. SWP: Steam Working Pressure 127. TAB: Testing, Adjusting, and Balancing 128. TDH: Total Dynamic Head 129. TEFC: Totally Enclosed Fan-Cooled 130. TFE: Tetrafluoroethylene Contract No. 36C26319D0022 Station Project No. 656-19-039

Bancroft-AE Project No. 18-116 06/02/2023

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

131. THERM: 100,000 Btu

- 132. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 133. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire
- 134. T/P: Temperature and Pressure
- 135. USDA: U.S. Department of Agriculture
- 136.V: Volt
- 137.
- 138. VA: Veterans Administration
- 139. VAC: Voltage in Alternating Current
- 140. VA CFM: VA Construction & Facilities Management
- 141. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 142. VAMC: Veterans Administration Medical Center
- 143. VHA OCAMES: Veterans Health Administration Office of Capital Asset Management Engineering and Support
- 144. VR: Vacuum condensate return
- 145. WCB: Wrought Carbon Steel, Grade B
- 146.WG: Water Gauge or Water Column
- 147. WOG: Water, Oil, Gas

1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.

- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

F. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

- G.
- H. Section 05 50 00, METAL FABRICATIONS.
- I. Section 07 84 00, FIRESTOPPING.
- J. Section 07 92 00, JOINT SEALANTS.
- K. Section 09 91 00, PAINTING.
- L. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.
- M. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

N. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

- O. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- P. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- Q. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- R. Section 23 36 00, AIR TERMINAL UNITS.
- S. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- T. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- U. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- V. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. Air Movement and Control Association (AMCA): 410-1996.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans
- C. American Society of Mechanical Engineers (ASME): B31.1-2018.....Power Piping B31.9-2014....Building Services Piping ASME Boiler and Pressure Vessel Code: BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications
- D. American Society for Testing and Materials (ASTM):

A36/A36M-2014.....Standard Specification for Carbon Structural Steel

A575-1996(R2018).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E. Association for Rubber Products Manufacturers (ARPM):

IP-20-2015.....Specifications for Drives Using Classical V-Belts and Sheaves

- IP-24-2016.....Specifications for Drives Using Synchronous Belts
- IP-27-2015.....Specifications for Drives Using Curvilinear Toothed Synchronous Belts

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

- F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.: SP-58-2018.....Pipe Hangers and Supports-Materials, Design, Manufacture, Selection, Application, and Installation SP-127-2014a....Bracing for Piping Systems: Seismic-Wind-Dynamic Design, Selection, and Application G. Military Specifications (MIL): MIL-P-21035B-2013.....Paint High Zinc Dust Content, Galvanizing Repair (Metric)
- H. National Fire Protection Association (NFPA): 70-2017.....National Electrical Code (NEC) 101-2018....Life Safety Code
- I. Department of Veterans Affairs (VA):
 PG-18-10-2016.....Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

- D. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- G. Coordination/Shop Drawings:
 - Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.

04-01-22

- 4. In addition, for HVAC systems, provide details of the following:
- a. Mechanical equipment rooms.
- b. Hangers, inserts, supports, and bracing.
- c. Pipe sleeves.
- d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- H. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- I. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- J. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

04-01-22

- 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.
- L. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- M. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard

products of a manufacturer regularly engaged in the manufacture of Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.

- Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 23 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Use of asbestos products or equipment or materials containing asbestos is prohibited.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04 - 01 - 22

- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- H. Execution (Installation, Construction) Quality:
 - Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.

- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
- 3. Complete coordination/shop drawings shall be required in accordance with Article, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
- 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.

04-01-22

- 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- Protect plastic piping and tanks from ultraviolet light (sunlight).
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 or newer provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

04 - 01 - 22

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

equipment being operated by VA. Maintain all egress routes and safety systems/devices.

04-01-22

F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

04-01-22

J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

motors and drives are inside factory-fabricated air handling unit casings.

- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed and ends shall be bent into flanges and the flanges shall be drilled and attached to pump base with minimum of four 6 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (1 inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (1 inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with or without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- C. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00,

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.

- D. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16 inch) high riveted or bolted to the equipment.
- E. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- F. Valve Tags and Lists:
 - HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS and Section 23 36 00, AIR TERMNAL UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.
- G. Ceiling Grid Labels:
 - 1. 50 mm (2 inch) long by 15 mm (1/2 inch) wide by 0.025 mm (1 mil) thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
 - 2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT

INSULATION, for firestop pipe and duct insulation.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 by 100 mm (2 by 4 inches) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 275 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

- F. Attachment to existing structure: Support from existing floor/roof frame.
- G. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
 - Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- I. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic-coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
- a. Provide eye rod or Type 17 eye nut near the upper attachment.
- b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.
- J. Pre-insulated Calcium Silicate Shields:
 - Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.

04-01-22

5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

```
04-01-22
```

- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 450 mm (18 inches) high with continuously welded seams, builtin cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

maintenance and operating space and access provisions that are shown on the contract documents.

04-01-22

- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 20 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gauges, thermometers, values and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

- N. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Article, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

 Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

04-01-22

- F. Overhead Supports:
 - The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Chiller foundations shall have horizontal dimensions that exceed chiller base frame dimensions by at least 150 mm (6 inches) on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

St. Cloud VA Health Care System St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

04-01-22

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Nameplates.
 - Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
 - Paint shall withstand the following temperatures without peeling or discoloration:

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

a. Condensate and Feedwater: 38 degrees C (100 degrees F) on insulation jacket surface and 121 degrees C (250 degrees F) on metal pipe surface.

04-01-22

- b. Steam: 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (374 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 0.95 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 04-01-22

St. Cloud, Minnesota 56303

Construct/Replace Building 50 MEP Systems

- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.
- E. Perform tests as required for commissioning provisions in accordance with Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. - - - E N D - - -

Bancroft Architects + Engineers

02-01-20

SECTION 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- H. Section 26 24 19, MOTOR CONTROL CENTERS.
- I. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA): 9-2015.....Load Ratings and Fatigue Life for Ball Bearings 11-2014....Bearings and Fatigue Life for Roller Bearings
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2013.....Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

D. Institute of Electrical and Electronics Engineers (IEEE): 112-2017.....Standard Test Procedure for Polyphase Induction Motors and Generators

841-2009......IEEE Standard for Petroleum and Chemical Industry-Premium-Efficiency, Severe-Duty, Totally Enclosed Fan-Cooled (TEFC) Squirrel Cage Induction Motors--Up to and Including 370

- kW (500 hp)
- E. National Electrical Manufacturers Association (NEMA):

MG 1-2019.....Motors and Generators

MG 2-2014.....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators

250-2014......Enclosures for Electrical Equipment (1000 Volts Maximum)

F. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20 recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - 1.As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 or newer provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 hp), connected to 240-volt or 480volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 hp) or larger, connected to 240-volt

systems: 230 volts.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- d. Motors, 74.6 kW (100 hp) or larger, connected to 480-volt systems: 460 volts.
- e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA MG 1 for connection to the nominal system voltage shown on the drawings.
- G. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 hp): Single phase.
 - 2. Motors, 373 W (1/2 hp) and larger: 3 phase.
 - 3.Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 hp), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.
- J. Motor Enclosures:
 - Shall be the NEMA types as specified and/or shown in the Contract Documents.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- K. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.
 - 2. The insulation system shall be rated minimum of Class B, 130 degrees C (266 degrees F).
 - 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (176 degrees F).
 - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
 - 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.
- L. Mechanical Design Requirements:
 - 1. Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
 - 2.Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
 - 3.Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
 - 4. Grease fittings, if provided, shall be Alemite type or equivalent.
 - 5.0il lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

- 6. Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- 10. Winding thermostats, when specified shall be normally closed, connected in series.
- 11. Grounding provisions shall be in the main terminal box.

M. Special Requirements:

- Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
- 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degreesC (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

- N. Additional requirements for specific motors, as indicated in the other sections listed in Article, RELATED SECTIONS shall also apply.
- O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 W (1 hp) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 W (1 hp) or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum	Premium 1	Efficienc	ies	Minimum Premium Efficiencies								
Oj	pen Drip-	Proof		Totally Enc	losed Fa	n-Cooled	(TEFC)					
Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM	Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM					
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%					
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%					
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%					
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%					
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%					
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%					
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%					
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%					
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%					
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%					
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%					
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%					
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%					
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%					
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%					
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%					
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%					
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%					
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%					

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

- P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

Polyph Average f	nase Oper ull load		Capacitor-start capacitor-run and capacitor-start induction run open motors Average full load efficiency								
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	6 poles	4 poles	2 poles				
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6				
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5				
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4				
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2				

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for one hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. --- E N D ---

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

02-01-20

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the application of noise control measures, and vibration control techniques to boiler plant rotating equipment and parts including chillers, cooling towers, boilers, pumps, fans, compressors, motors and steam turbines.
- B. A complete listing of all common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Noise criteria, , vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Conference Rooms	35
Corridors (Public)	40
Dining Rooms, Food Services/ Serving	40
Offices, Large Open	40
Offices, Small Private	35

2. For equipment which has no sound power ratings scheduled on the

plans, the contractor shall select equipment such that the fore-Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

going noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 8, Sound and Vibration.

- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Handbook 2017.....Fundamentals Handbook, Chapter 8, Sound and
 - Vibration
- C. American Society for Testing and Materials (ASTM):

A123/A123M-2017.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

A307-2016..... Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

D2240-05(2010).....Standard Test Method for Rubber Property -

Durometer Hardness

- D. Manufacturers Standardization (MSS): SP-58-2018.....Pipe Hangers and Supports-Materials, Design and Manufacture
- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1960.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE): ASCE 7-2017.....Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008.....Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC): IBC 2018.....International Building Code.
- I. Department of Veterans Affairs (VA): H-18-8 2016.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.

- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS (NOT USED)

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 3. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for

spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.

- 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. // Isolators shall have a minimum seismic rating of one G. //
- 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- 6. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.

- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.
- D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).

- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peakto-peak displacement of 2 mm (1/16 inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.
- 2.5 SOUND ATTENUATING UNITS (NOT USED)

2.6 ACOUSTICAL ENCLOSURES IN MECHANICAL ROOMS (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and

belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.

- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4 inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

Bancroft Architects + Engineers

02-01-20

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT ON GRADE			E	20FT	FLOOR	SPAN	30FT FLOOR SPAN			40FT	FLOOR	SPAN	50FT FLOOR SPAN			
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
REFRIGER	ATION M	ACHIN	IES													
ABSORPTIO	N		D	0.3		SP	0.8		SP	1.5		SP	1.5		SP	2.0
PACKAGED	HERMETIC		D	0.3		SP	0.8		SP	1.5		SP	1.5	R	SP	2.5
OPEN CENT	RIFUGAL	В	D	0.3	В	SP	0.8		SP	1.5	В	SP	1.5	В	SP	3.5
RECIPROCA	TING:															
ALL			D	0.3		SP	0.8	R	SP	2.0	R	SP	2.5	R	SP	3.5
COMPRESS	ORS AND	VACU	JUM PI	JMPS		I				1					I	T
UP THROUGH HP	1-1/2		D,L, W	0.8		D,L, W	0.8		D,L, W	1.5		D,L, W	1.5		D,L, W	
2 HP AND O	VER:															
500 - 750	RPM		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
750 RPM &	OVER		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
PUMPS																
CLOSE COUPLED	UP TO 1-1/2 HP					D,L, W			D,L, W			D,L, W			D,L, W	
	2 HP & OVER				I	S	0.8	I	S	1.5	I	S	1.5	I	S	2.0

EQUIPMENT		c	ON GRADE			20FT FLOOR SPAN			30FT FLOOR SPAN			FLOOR	SPAN	50FT FLOOR SPAN		
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
LARGE INLINE	Up to 25 HP					S	0.75		S	1.50		S	1.50			NA
	26 HP THRU 30 HP					S	1.0		S	1.50		S	2.50			NA
	UP TO 10 HP					D,L, W			D,L, W			D,L, W			D,L, W	
BASE MOUNTED	15 HP THRU 40 HP	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.0	I	S	2.0
	50 HP & OVER	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.5	I	S	2.5
ROOF FAN	IS				-						-					
ABOVE OCCU	PIED AREA	S:														
5 HP & OV	'ER				CB	S	1.0	CB	S	1.0	СВ	S	1.0	СВ	S	1.0
CENTRIFU	igal fan	IS														
UP TO 50 H	P:															
UP TO 200	RPM	В	Ν	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5
201 - 300	RPM	В	Ν	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500	RPM	В	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM &	OVER	В	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5

EQUIPMENT	ON GRADE			20FT FLOOR SPAN			30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN		
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
60 HP & OVER:											•				
UP TO 300 RPM	В	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5	I	S	3.5
301 - 500 RPM	В	S	2.0	I	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5
501 RPM & OVER	В	S	1.0	I	S	2.0	I	S	2.0	I	S	2.5	I	S	2.5
COOLING TOWERS															
UP TO 500 RPM					SP	2.5		SP	2.5		SP	2.5		SP	3.5
501 RPM & OVER					SP	0.75		SP	0.75		SP	1.5		SP	2.5
INTERNAL COMBUSTION	ENGINE	ES													
UP TO 25 HP	I	Ν	0.75	I	Ν	1.5	I	S	2.5	I	S	3.5	I	S	4.5
30 THRU 100 HP	I	Ν	0.75	I	Ν	1.5	I	S	2.5	I	S	3.5	I	S	4.5
125 HP & OVER	I	Ν	0.75	I	Ν	1.5	I	S	2.5	I	S	3.5	I	S	4.5
AIR HANDLING UNIT PA	ACKAGES	3													
SUSPENDED:															
UP THRU 5 HP					Н	1.0		Н	1.0		Н	1.0		Н	1.0
7-1/2 HP & OVER:		1	1							-			-		
UP TO 500 RPM					H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5
501 RPM & OVER					H, THR	0.8		H, THR	0.8		H,TH R	0.8		Н , ТН R	2.0

EQUIPMENT	ON GRADE			20FT	FLOOR	SPAN	30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN		
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
FLOOR MOUNTED:									•						
UP THRU 5 HP		D			S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:				-											
UP TO 500 RPM		D		R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
HEAT PUMPS															
ALL		S	0.75		S	0.75		S	0.75	СВ	S	1.5			NA
CONDENSING UNITS			•						•					•	
ALL		SS	0.25		SS	0.75		SS	1.5	СВ	SS	1.5			NA
IN-LINE CENTRIFUGAL	AND VA	ANE AXI	AL FAN	S, FLO	OR MOUN	ITED: (APR 9)								
UP THRU 50 HP:															
UP TO 300 RPM		D		R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5
60 HP AND OVER:															
301 - 500 RPM	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.5	R	S	3.5
501 RPM & OVER	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.0	R	S	2.5

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- 2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

Bancroft Architects + Engineers

02-01-20

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
 - 9.Document critical paths of flow on reports.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 39, "Testing, Adjusting and Balancing" of 2019 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. TABB: Testing Adjusting and Balancing Bureau
 - 6. SMACNA: Sheet Metal Contractors National Association
 - 7. Hydronic Systems: Includes chilled water, heating hot water .
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 05 93 - 1

Bancroft Architects + Engineers

02-01-20

- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- D. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Section 23 31 00, HVAC DUCTS AND CASINGS.
- H. Section 23 36 00, AIR TERMINAL UNITS.
- I. Section 23 64 00, PACKAGED WATER CHILLERS.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC, NEEB, TABB or NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another qualified TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC, TABB or NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or TABB or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration

of duties specified herein. If, for any reason, the Specialist loses Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

23 05 93 - 2

Bancroft Architects + Engineers

subject certification during this period, the General Contractor shall immediately notify the Contracting Officer's Representative and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Contracting Officer's Representative. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC, TABB or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
 - f. Shall document critical paths from the fan or pump. These critical paths are ones in which are 100% open from the fan or pump to the terminal device. This will show the least amount of restriction is being imposed on the system by the TAB firm.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC, TABB or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 23 05 93 - 3

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20 Standards, TABB/SMACNA International Standards, or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

- D. TAB Criteria:
 - One or more of the applicable AABC, NEBB, TABB or SMACNA publications, supplemented by ASHRAE Handbook "2019 HVAC Applications" Chapter 39, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "2019 HVAC Applications", Chapter 39, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Minimum outside air: 0 percent to plus 10 percent.
 - d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - e. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
 - f. Chilled water and condenser water pumps: Minus 0 percent to plus 5 percent.
 - g. Chilled water coils: Minus 0 percent to plus 5 percent.
 - Systems shall be adjusted for energy efficient operation as described in PART 3.
 - 4. Typical TAB procedures and critical path results shall be demonstrated to the Contracting Officer's Representative for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR one of

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

23 05 93 - 4

Bancroft Architects + Engineers

\$02-01-20\$ which shall be a critical path) and one hydronic system (pumps and three coils) as follows:

a. When field TAB work begins.

b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Contracting Officer's Representative staff, submit one complete set of applicable AABC,NEBB or TABB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
 - Include in each report the critical path for each balanced branch (air and hydronic. Every branch shall have at least one terminal device damper 100% open.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area with noted critical paths.

Bancroft Architects + Engineers

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE): Handbook 2019.....HVAC Applications ASHRAE Handbook, Chapter 39,

Testing, Adjusting, and Balancing and $\operatorname{Chapter}$

49, Sound and Vibration Control

C. Associated Air Balance Council (AABC): 7th Edition 2016AABC National Standards for Total System

Balance

D. National Environmental Balancing Bureau (NEBB):

9th Edition 2019Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

- 3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration
- 2rd Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2005HVAC SYSTEMS Testing, Adjusting and Balancing TABB- TAB Procedural Guide Current Edition

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 05 93 - 6

02-01-20

Bancroft Architects + Engineers

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Contracting Officer's Representative of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA (TABB), supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to Contracting Officer's Representative.
 - B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to COR in standard format and forms prepared and or approved by the Commissioning Agent.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

23 05 93 - 7

Bancroft Architects + Engineers

C. Verify that all items such as ductwork piping, dampers, valves, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Contracting Officer's Representative.

3.6 TAB REPORTS

- A. Submit an intermediate report for 25 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Contracting Officer's Representative if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated after engineering and construction have been evaluated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Contracting Officer's Representative.

3.7 TAB PROCEDURES

- A. TAB shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC, TABB or NEBB. Balancing shall be done proportionally to all applicable systems.
 1. At least one trunk damper shall be 100% open.
 - 2. At least one branch damper shall be 100%open per trunk.
 - 3. At least one terminal device duct be 100% open per branch.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for
- D. Allow 7 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

23 05 93 - 8

Bancroft Architects + Engineers

- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, and room diffusers/outlets/inlets,
 - 1. Artificially load air filters by partial blanking to produce static air pressure drop of manufacturer's recommended pressure drop.
 - 2. Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC .
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other HVAC controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary to meet design criteria. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
 - 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps, and coils:
 - 1. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
- 2. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 05 93 - 9

02-01-20

Bancroft Architects + Engineers

and cooling coils. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC . Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Contracting Officer's Representative. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Contracting Officer's Representative.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - Take readings in rooms, approximately ten percent of all rooms. The Contracting Officer's Representative may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC, TABB or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to 2019 ASHRAE Handbook, "HVAC Applications", Chapter 49, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - Reduce the background noise as much as possible by shutting off unrelated audible equipment.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

23 05 93 - 10

Bancroft Architects + Engineers

02-01-20

- b. Measure octave band sound pressure levels with specified equipment "off."
- c. Measure octave band sound pressure levels with specified
 equipment "on."
- d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	З	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 50 feet for sound level location.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Contracting Officer's Representative and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Contracting Officer's Representative based on the recorded sound data.

Bancroft Architects + Engineers

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Contracting Officer's Representative.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.14 CRITICAL FLOW PATH

A. Provide a documented critical path for all fluid flows. There shall be at least one terminal device that can be traced back to the fan or pump where there is no damper or valves that are less than 100% open.

- - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 05 93 - 12

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - 3. Re-insulation of HVAC piping, ductwork and equipment, and equipment after asbestos abatement.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms.
- 6. FSK: Foil-scrim-kraft facing.
- Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
- Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

Bancroft Architects + Engineers

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59
 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. HWH: Hot water heating supply.
- 20. HWHR: Hot water heating return.
- 21. GH: Hot glycol-water heating supply.
- 22. GHR: Hot glycol-water heating return.
- 23. R: Pump recirculation.
- 24. CW: Cold water.
- 25. SW: Soft water.
- 26. HW: Hot water.
- 27. CH: Chilled water supply.
- 28. CHR: Chilled water return.
- 29. GC: Chilled glycol-water supply.

30. GCR: Chilled glycol-water return.

1.2 RELATED WORK

- A Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- C. Section 02 82 13. GLOVEBAG ASBESTOS ABATEMENT.
 - D. Section 07 84 00, FIRESTOPPING.
- E. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.

F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20

- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 21 13, HYDRONIC PIPING.
- I. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- J. Section 23 22 23, STEAM CONDENSATE PUMPS

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC .
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

02-01-20

Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 07 11 - 4

06/02/2023

Bancroft Architects + Engineers

02-01-20 insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 1999.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Destate) Disid

Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.): MIL-A-3316C -1987 Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-2016 Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)- 2016 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-1987Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): A167-99 2014.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B209-2014......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2019.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Banc	roft Architects + Engineers 02-01-20
C449-2019	Standard Specification for Mineral Fiber
	Hydraulic-Setting Thermal Insulating and
	Finishing Cement
C533-2017	Standard Specification for Calcium Silicate
	Block and Pipe Thermal Insulation
C534-2017	Standard Specification for Preformed Flexible
	Elastomeric Cellular Thermal Insulation in
	Sheet and Tubular Form
C547-2017	Standard Specification for Mineral Fiber pipe
	Insulation
C552-07	Standard Specification for Cellular Glass
	Thermal Insulation
C553-2015	Standard Specification for Mineral Fiber
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
C585-2016	Standard Practice for Inner and Outer Diameters
	of Rigid Thermal Insulation for Nominal Sizes
	of Pipe and Tubing (NPS System) R (1998)
C612-2014	Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126- 2019	Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136- 2017	Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
D1668-97a 2017	Standard Specification for Glass Fabrics (Woven
	and Treated) for Roofing and Waterproofing
E84-2014	Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
E119-2007	Standard Test Method for Fire Tests of Building
	Construction and Materials
E136-2019	Standard Test Methods for Behavior of Materials
	in a Vertical Tube Furnace at 750 degrees C
	(1380 F)

Bancroft Architects + Engineers

02-01-20 E. National Fire Protection Association (NFPA): 90A-2018.....of Air Conditioning and Ventilating Systems 96-2018......Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations 101-2018....Life Safety Code 251-2014Standard methods of Tests of Fire Endurance of Building Construction Materials 255-2006.....Standard Method of tests of Surface Burning Characteristics of Building Materials F. Underwriters Laboratories, Inc (UL): 723-2018.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08 G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2018......Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, // Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

Bancroft Architects + Engineers

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 POLYISOCYANURATE CLOSED-CELL RIGID (NOT USED)

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.7 DUCT WRAP FOR KITCHEN HOOD GREASE DUCTS (NOT USED)

2.8 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics						
ITEMS	TYPE I	TYPE II				

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

02-01-20

Temperature, maximum degrees C	649 (1200)	927 (1700)	
(degrees F)			
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)	
Thermal conductivity:			
Min W/ m K (Btu in/h ft ² degrees F)@	0.059	0.078	
mean temperature of 93 degrees C	(0.41)	(0.540)	
(200 degrees F)			
Surface burning characteristics:			
Flame spread Index, Maximum	0	0	
Smoke Density index, Maximum	0	0	

2.9 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

02-01-20 vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.10 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - Temperature maximum of 450°F, Maximum water vapor transmission of
 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

Bancroft Architects + Engineers

2.11 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				
150 (6)	150 (6) long				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- 2.12 ADHESIVE, MASTIC, CEMENT
 - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
 - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
 - C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
 - D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
 - E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
 - F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
 - G. Other: Insulation manufacturers' published recommendations.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

23 07 11 - 12

02-01-20

Bancroft Architects + Engineers

2.13 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.14 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.15 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.16 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

02-01-20

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

system. Access doors and other items requiring maintenance or access shall be removable and sealable.

- H. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
- I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- K. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- L. Freeze protection of above grade outdoor piping (over heat tracing tape): 26 mm (10 inch) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(1inch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).

M. Provide vapor barrier jackets over insulation as follows:

1. All piping and ductwork exposed to outdoor weather.

- N. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

- Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
- 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

\$02-01-20\$ per liter (12 to 15 square feet per gallon) over the entire fabric surface.

- d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics,:
 - a. 40 mm (1-1/2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct and after filter housing.
 - b. 40 mm (1-1/2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
 - d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- 4. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
 - a. Chilled water pumps, water filter, chemical feeder pot or tank.
 - b. Pneumatic, cold storage water and surge tanks.
- 5. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 - a. Reheat coil casing and separation chambers on steam humidifiers located above ceilings.
- B. Flexible Mineral Fiber Blanket:
 - Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.

- 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
- 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- 4. Concealed return air duct:
 - a. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 - b. Concealed return air ductwork in other locations need not be insulated.
- 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- 6. Exhaust air branch duct from autopsy refrigerator to main duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

2. Contractor's options for fitting, flange and valve insulation: Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/0

23 07 11 - 18

06/02/2023

Bancroft Architects + Engineers

- a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
- b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
- c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- E. Cellular Glass Insulation:
 - Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Underground Piping Other than or in lieu of that Specified in Section 23 21 13, HYDRONIC PIPING and Section 33 63 00, STEAM ENERGY DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - e. Underground insulation shall be inspected and approved by the Contracting Officer's Representative as follows:1) Insulation in place before coating.2) After coating.
 - f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
 - 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps.
 - 4. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20

- F. Polyisocyanurate Closed-Cell Rigid Insulation:
 - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).
 - 2. Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
 - Install insulation with all joints tightly butted (except expansion) joints in hot applications).
 - 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
 - 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
 - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.
 - For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
 - 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
 - 9. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 10. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 11. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- G. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
 - 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
 - 6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 - a. Chilled water pumps
 - b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).

Bancroft Architects + Engineers

- 02-01-20
- c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
- d. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- 7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- H. Calcium Silicate:
 - Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant. See paragraphs 3.3 through 3.7 for Boiler Plant Applications.

3.3 APPLICATION -BOILER PLANT, PIPE, VALVES, STRAINERS AND FITTINGS: (NOT USED)

3.4 APPLICATION-BOILER FLUE GAS SYSTEMS (NOT USED)

3.5 APPLICATION-BOILER DEAERATING FEEDWATER HEATER, TANKS (NOT USED)

3.6 APPLICATION ON HEATED OR TRACED OIL FACILITIES OUTSIDE OF BUILDING (NOT USED)

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Wall Thickness Millimeters (Inches)						
		Nominal	Pipe Size	Millimeters	(Inches)	
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1½ - 3)	100 (4) and Above	
	Insulatio	Insulation Wall Thickness Millimeters (Inches)				

Bancroft Architects + Engineers

			5		02-01-20
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)
93-260 degrees C (200-500 degrees F)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)
(HPS, HPR)					
100-121 degrees C (212-250 degrees F)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
(HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	prping onry				
100-121 degrees C (212-250 degrees F)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
(HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)					
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR,	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
GH and GHR)		2.0			
38-99 degrees C (100-211 degrees F)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(LPR, PC, HWH, HWHR, GH and GHR)					
39-99 degrees C (100-211 degrees F)	Polyiso- cyanurate	38 (1.5)	38 (1.5)		
(LPR, PC, HWH, HWHR, GH and GHR)	Closed-Cell Rigid (Exterior Locations only)				
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		
4-16 degrees C (40-60 degrees F)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

23 07 11 - 24

Bancroft Architects + Engineers

					02-01-20
(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16 degrees C	Cellular	50	50 (2.0)	75 (3.0)	75 (3.0)
(40-60 degrees F)	Glass Closed- Cell	(2.0)			
(CH and CHR within chiller room and pipe chase and underground)					
4-16 degrees C	Cellular	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Glass Closed- Cell	(1.5)			
(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16 degrees C	Polyiso-	38	38 (1.5)	50 (2.0)	50 (2.0)
(40-60 degrees F) (CH, CHR, GC and GCR	cyanurate Closed-Cell Rigid	(1.5)			
(where underground)	NIGIU				
4-16 degrees C	Polyiso-	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	cyanurate Closed-Cell	(1.5)			
(CH, CHR, GC, GCR	Rigid				
and RS for DX refrigeration)	(Exterior Locations				
leiiigeideion,	only)				
(40-60 degrees F)	Flexible	38	38 (1.5)	38 (1.5)	38 (1.5)
(CH, CHR, GC, GCR	Elastomeric Cellular	(1.5)			
and RS for DX refrigeration)	Thermal (Above ground piping only)				

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 07 11 - 25

Bancroft Architects + Engineers

04-01-22

SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT.
- E. Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- F. Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the HVAC systems of the related subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REOUIREMENTS.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 08 00 - 1

Bancroft Architects + Engineers

systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

B. The Facility HVAC systems commissioning will include the systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.7 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. Department of Veterans Affairs (VA): PG 18-10 2007.....Mission Critical Facilities - DRAFT PG 18-10 2007.....Life-Safety Protected Facilities - DRAFT
- C. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
 - HANDBOOK 2019.....HVAC Applications ASHRAE Handbook, Chapter 39, Testing, Adjusting, and Balancing, Chapter 44, HVAC Commissioning and Chapter 49, Sound and Vibration Control

HANDBOOK 2017.....HVAC Fundamentals ASHRAE Handbook, Chapter 8, Sound and Vibration

D. Associated Air Balance Council (AABC): 7th Edition 2016.....AABC National Standards for Total System Balance

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

04 - 01 - 22

23 08 00 - 2

Bancroft Architects + Engineers

E. National Environmental Balancing Bureau (NEBB): 9th Edition 2019.....Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems 3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration 2nd Edition 2019 ... Standard for Whole Building Technical

Commissioning of New Construction

F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

0062006..... HVAC Duct Construction Standard - Metal and Flexible Duct

3rd Edition 2005 ... HVAC Systems Testing, Adjusting and Balancing

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. Refer to Sections 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT, Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC and Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC requirements. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

23 08 00 - 3

Bancroft Architects + Engineers

04-01-22 marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional requirements.

Bancroft Architects + Engineers

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 04-01-22

Bancroft Architects + Engineers

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 09-11

Bancroft Architects + Engineers

calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.

09-11

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 5. The control system shall accommodate 1 Engineering Control Center(s) and the control system shall accommodate 5 web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:

Bancroft Architects + Engineers

- 1. Refrigerant leak detection system.
- 2. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.

09-11

- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - Boiler and/or chiller controls. These controls, if not native BACnet, will require a BACnet Gateway.
 - 3. Terminal units' velocity sensors
 - Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure	23	23	N/A	N/A

Bancroft Architects + Engineers

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
stations.				
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
Interface with chiller/boiler controls	23 09 23	23 09 23	23 09 23	26
Chiller/boiler controls interface with control system	23	23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
Chiller/starter interlock wiring	N/A	N/A	26	26
Chiller Flow Switches	23	23	23	N/A
Boiler interlock wiring	23	23	23	26
Boiler Flow Switches	23	23	23	N/A
Water treatment system	23	23	23	26
VFDs	23 09 23	26	23 09 23	26
Refrigerant monitors	23	23 09 23	23 09 23	26
Laboratory Environmental Controls	23 09 23	23 09 23	23 09 23	26
Fume hood controls	23 09 23	23 09 23	23 09 23	26
Medical gas panels	23	23	26	26
Laboratory Air Valves	23	23	23 09 23	N/A
Computer Room A/C Unit field-mounted controls	23	23	16	26

Bancroft Architects + Engineers

Bancroit Architects + Engineers 09-				
Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system interface with CRU A/C controls	23 09 23	23 09 23	23 09 23	26
CRU A/C unit controls interface with control system	23	23 09 23	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Fire-fighter's smoke control station (FSCS	28	28	28	28
Fan Coil Unit controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU space-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU unit-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Cooling Tower Vibration Switches	23	23	23 09 23	23 09 23
Cooling Tower Level Control Devices	23	23	23 09 23	23 09 23
Cooling Tower makeup water control devices	23	23	23 09 23	23 09 23
Starters, HOA switches	23	23	N/A	26

F. This facility's existing direct-digital control system is manufactured by Johnson Controls, and its ECC is located at . The existing system's top-end communications is via . The existing system's ECC and top-end controllers were installed in . The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare

Bancroft Architects + Engineers

09-11 capacity of the existing control system and its ECC prior to beginning work.

- G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.
 - The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
 - 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
 - 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.
 - 4. Responsibility Table:

Item/Task	Section 23 09 23	Control system	VA
	contactor	integrator	
ECC expansion		Х	

Bancroft Architects + Engineers

			09-11
ECC programming		Х	
Devices, controllers, control panels	Х		
and equipment			
Point addressing: all hardware and	Х		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	Х		

00 - 11

- H. Unitary standalone systems including Unit Heaters, Cabinet Unit Heaters, Fan Coil Units, Base Board Heaters, thermal comfort ventilation fans, and similar units for control of room environment conditions may be equipped with integral controls furnished and installed by the equipment manufacturer or field mounted. Refer to equipment specifications and as indicated in project documents. Application of standalone unitary controls is limited to at least those systems wherein remote monitoring, alarm and start-up are not necessary. Examples of such systems include:
 - 1. Light-switch-operated toilet exhaust
 - 2. Vestibule heater
 - 3. Exterior stair heater
 - 4. Attic heating and ventilation
 - 5. Mechanical or electrical room heating and ventilation.
- I The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

Bancroft Architects + Engineers

1.2 RELATED WORK

A. Section 21 05 11, Common Work Results for Fire Suppression.

- B. Section 21 10 00, Water-Based Fire-Suppression Systems.
- C. Section 23 21 13, Hydronic Piping.
- D. Section 23 22 13, Steam and Condensate Heating Piping.
- E. Section 23 31 00, HVAC Ducts and Casings.
- F. Section 23 36 00, Air Terminal Units.
- G. Section 23 64 00, Packaged Water Chillers.
- H. Section 23 73 00, Indoor Central-Station Air-Handling Units.
- I. Section 23 74 13, Packaged, Outdoor, Central-Station Air-Handling Units.
- J. Section 25 10 10, Advanced Utility Metering System.
- K. Section 26 05 11, Requirements for Electrical Installations.
- L. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- M. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- N. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- O. Section 26 27 26, Wiring Devices.
- P. Section 26 29 11, Motor Starters.
- Q. Section 28 31 00, Fire Detection and Alarm.

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.

Bancroft Architects + Engineers

E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.

09 - 11

- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.

Bancroft Architects + Engineers

P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls

09 - 11

- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the

Bancroft Architects + Engineers

Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.

- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 09-11

Bancroft Architects + Engineers

09-11

- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an NN. MS/TBmmMasteriehawéthokehepaBACngt(de0/IEE 9802, Part 3). It is not an NN. MS/TBe MAShet-syaventoken-passing (ISO/IEC 8802, Part 3). It is not an

Bancroft Architects + Engineers

PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.

09 - 11

- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.

Bancroft Architects + Engineers

09-11

- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - 4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
 - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be

Bancroft Architects + Engineers

09-11 involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.

- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.

Bancroft Architects + Engineers

 Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.

09 - 11

- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading
Carbon Dioxide (CO ₂)	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Bancroft Architects + Engineers

09-11

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain

measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the

Bancroft Architects + Engineers

qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.

09-11

D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly

Bancroft Architects + Engineers

reference the specification and/or drawings that it supposed to represent.

09 - 11

- Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:

Bancroft Architects + Engineers

 Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.

09-11

- Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
- 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.

Bancroft Architects + Engineers

h. Licenses, guaranty, and other pertaining documents for all equipment and systems.

09-11

G. Submit Performance Report to Contracting Officer's Representative prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below. Contractor shall also video tape instruction sessions noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
 - 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35° C (65 to 90° F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures,

and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$). Contract No. 36C26319D0022Station Project No. 656-19-039Bancroft-AE Project No. 18-11606/02/2023

Bancroft Architects + Engineers

C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.

09 - 11

D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
- D. American Society of Testing Materials (ASTM):

B32-08.....Standard Specification for Solder Metal B88-09....Standard Specifications for Seamless Copper Water Tube B88M-09....Standard Specification for Seamless Copper Water Tube (Metric) B280-08....Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service D2737-03....Standard Specification for Polyethylene (PE) Plastic Tubing

- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11..... National Electric Code

Bancroft Architects + Engineers

90A-09.....of Air-Conditioning and Ventilation Systems

09 - 11

H. Underwriter Laboratories Inc (UL):

94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10....Access Control System Units 486A/486B-10....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10....Energy Management Equipment 1076-10....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.

e. Addressable elements, sensors, transducers and end devices. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.

09 - 11

- g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. They may also utilize digital wireless technologies as appropriate to the application and if approved by the VA.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.

Bancroft Architects + Engineers

 Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.

09 - 11

- 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
- 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - The ARCNET data link / physical protocol may be used in new BACnet sub-networks in VA non-healthcare and non-lab (i.e., business and cemetery) facilities.
 - 3. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.

Bancroft Architects + Engineers

B. Each controller shall have a communication port for connection to an operator interface.

09-11

- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
- B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet)

Bancroft Architects + Engineers

Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.

09 - 11

- C. Hardware: ECC shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - ECC shall be commercial standard with supporting 32- or 64-bit hardware (as required by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, and 16 speed high density DVD-RW+/- optical drive.
 - a. The hard drive shall be at the minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and shall have sufficient memory to store:
 - 1) All required operator workstation software
 - 2) A DDC database at least twice the size of the delivered system database
 - One year of trend data based on the points specified to be trended at their specified trend intervals.
 - b. Real-time clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
 - c. Serial ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
 - d. Parallel port: Enhanced.
 - e. Sound card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions.

Bancroft Architects + Engineers

f. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, non-interlaced, and a maximum dot pitch of 0.28 mm.

09 - 11

- g. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
- h. Mouse: Standard, compatible with installed software.
- i. Removable disk storage: Include the following, each with appropriate controller:
 - Minimum 1 TB removable hard disk, maximum average access time of 10 ms.
- j. Network interface card (NIC): integrated 10-100-1000 Base-TX
 Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC
 with an SC/ST connector.
- Cable modem: 42.88 MBit/s, DOCSIS 2.0 Certified, also backwards compatible with DOCSIS 1.1/1.0 standards. Provide Ethernet or USB connectivity.
- 3. Optical modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.
- 4. Auto-dial modem: 56,600 bps, full duplex for asynchronous communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v.42 Appendix VI for error correction, and ITU-T v.42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68.
- 5. Audible Alarm: Manufacturer's standard.
- 6. Printers:
 - a. Provide a dedicated, minimum resolution 600 dpi, color laser printer, connected to the ECC through a USB interface.
 - If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler.
 - 2) RAM: 512 MB, minimum.

Bancroft Architects + Engineers

3) Printing Speed: Minimum twenty six pages per minute (color); minimum 30 pages per minute (black/white).

09 - 11

- Paper Handling: Automatic sheet feeder with 250-sheet x 8.5 inch x 11 inch paper cassette and with automatic feed.
- b. Provide a dedicated black/white tractor-feed dot matrix printer for status/alarm message printing, minimum 10 characters per inch, minimum 160 characters per second, connected to the ECC through a USB interface.
 - Paper: One box of 2000 sheets of 8-1/2x11 multi-fold type printer paper.
- 7. RS-232 ASCII Interface
 - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.
 - b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
 - c. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
 - d. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.
 - e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1) NFPA 70, Type CMP.
 - 2) Flame Resistance: NFPA 262, Flame Test.
- 8. Self-contained uninterruptible power supply (UPS):

Bancroft Architects + Engineers

- a. Size: Provide a minimum of six hours of operation of ECC equipment, including two hours of alarm printer operation.
- b. Batteries: Sealed, valve regulated, recombinant, lead calcium.

09-11

- c. Accessories:
 - 1) Transient voltage suppression.
 - 2) Input-harmonics reduction.
 - 3) Rectifier/charger.
 - 4) Battery disconnect device.
 - 5) Static bypass transfer switch.
 - 6) Internal maintenance bypass/isolation switch.
 - 7) External maintenance bypass/isolation switch.
 - 8) Output isolation transformer.
 - 9) Remote UPS monitoring.
 - 10) Battery monitoring.
 - 11) Remote battery monitoring.
- D. ECC Software:
 - Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator.
 - 2. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.
 - 3. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.
 - 4. Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems are Windows XP, Windows System 7, Linux, and UNIX.
 - 5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10

Bancroft Architects + Engineers

graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.

09 - 11

- 6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
- 7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
- 8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.
- 9. Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.

Bancroft Architects + Engineers

10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and other Windows based software programs, while concurrently on-line system alarms and monitoring information.

09 - 11

- 11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext.
- 12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.
- 13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
 - Point database editing, storage and downloading of controller databases.
 - b. Scheduling and override of building environmental control systems.
 - c. Collection and analysis of historical data.
 - d. Alarm reporting, routing, messaging, and acknowledgement.
 - e. Definition and construction of dynamic color graphic displays.
 - f. Real-time graphical viewing and control of environment.
 - g. Scheduling trend reports.

Bancroft Architects + Engineers

- h. Program editing.
- i. Operating activity log and system security.
- j. Transfer data to third party software.
- 14. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.
 - c. Event scheduling.
 - d. Dynamic trend definition and presentation.
 - e. Program and database editing.
 - f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.
- 15. Graphic Displays:
 - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
 - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
 - c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 09-11

Bancroft Architects + Engineers

09 - 11

automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.

- d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
- e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.
- f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
- g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system.
- 16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c. List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.
 - g. List of weekly schedules.
 - h. List of holiday programming.
 - i. List of limits and dead bands.
 - j. Custom reports.

Bancroft Architects + Engineers

k. System diagnostic reports, including, list of digital controllers
 on the network.

09 - 11

- 1. List of programs.
- 17. ASHRAE Standard 147 Report: Provide a daily report that shows the operating condition of each chiller as recommended by ASHRAE Standard 147. At a minimum, this report shall include:
 - a. Chilled water (or other secondary coolant) inlet and outlet temperature
 - b. Chilled water (or other secondary coolant) flow
 - c. Chilled water (or other secondary coolant) inlet and outlet pressures
 - d. Evaporator refrigerant pressure and temperature
 - e. Condenser refrigerant pressure and liquid temperature
 - f. Condenser water inlet and outlet temperatures
 - g. Condenser water flow
 - h. Refrigerant levels
 - i. Oil pressure and temperature
 - j. Oil level
 - k. Compressor refrigerant discharge temperature
 - 1. Compressor refrigerant suction temperature
 - m. Addition of refrigerant
 - n. Addition of oil
 - o. Vibration levels or observation that vibration is not excessive
 - p. Motor amperes per phase
 - q. Motor volts per phase
 - r. PPM refrigerant monitor level
 - s. Purge exhaust time or discharge count
 - t. Ambient temperature (dry-bulb and wet-bulb)
 - u. Date and time logged
- 18. Electrical, Gas, and Weather Reports
 - a. Electrical Meter Report: Provide a monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each building meter.

Bancroft Architects + Engineers

b. Provide an annual (12-month) summary report showing the monthly electrical consumption and peak demand with time and date stamp for each meter.

09 - 11

- c. Gas Meter Report: Provide a monthly report showing the daily natural gas consumption for each meter. Provide an annual (12month) report that shows the monthly consumption for each meter.
- d. Weather Data Report: Provide a monthly report showing the daily minimum, maximum, and average outdoor air temperature, as well as the number of heating and cooling degree-days for each day. Provide an annual (12-month) report showing the minimum, maximum, and average outdoor air temperature for the month, as well as the number of heating and cooling degree-days for the month.
- 19. Scheduling and Override:
 - a. Provide override access through menu selection from the graphical interface and through a function key.
 - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.
- 20. Collection and Analysis of Historical Data:
 - a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.

Bancroft Architects + Engineers

b. Reports may be customized to include individual points or

09-11

- predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.
- c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
- d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.
- 21. Alarm Management:
 - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
 - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
 - c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.

Bancroft Architects + Engineers

- d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
- e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
- 22. Remote Communications: The system shall have the ability to dial out in the event of an alarm. Receivers shall include operator workstations, e-mail addresses, and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself.
- 23. System Configuration:
 - a. Network control strategies shall not be restricted to a single digital controller, but shall be able to include data from all other network devices to allow the development of global control strategies.
 - b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations.

2.5 PORTABLE OPERATOR'S TERMINAL (POT)

- A. Provide a portable operator's terminal (POT) that shall be capable of accessing all system data. POT may be connected to any point on the system network or may be connected directly to any controller for programming, setup, and troubleshooting. POT shall communicate using BACnet protocol. POT may be connected to any point on the system network or it may be connected directly to controllers using the BACnet PTP (Point-To-Point) Data Link/ Physical layer protocol. The terminal shall use the Read (Initiate) and Write (Execute) BACnet Services. POT shall be an IBM-compatible notebook-style PC including all software and hardware required.
- B. Hardware: POT shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - POT shall be commercial standard with supporting 32- or 64-bit hardware (as limited by the direct-digital control system software)

Bancroft Architects + Engineers

09-11

and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 500 GB 7200 rpm SATA hard drive with 16 MB cache, minimum 2GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, minimum 16 inch (diagonal) screen, 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector, 56,600 bps modem, an ASCII RS-232 interface, and a 16 speed high density DVD-RW+/- optical drive.

C. Software: POT shall include software equal to the software on the ECC.

2.6 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.7 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
 where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where

a. FFF and N are as above and

Bancroft Architects + Engineers

b. DD = 00-99, this allows up to 100 devices per network.

2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.

09-11

- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

A. All BACnet Devices - controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs),

Bancroft Architects + Engineers

describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.

09 - 11

- BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
- BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
- 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
- BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to

Bancroft Architects + Engineers

share real and virtual object information and allow for central monitoring and alarms.

09 - 11

- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

Bancroft Architects + Engineers

B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.

- Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
- Each B-ASC will contain sufficient I/O capacity to control the target system.
- 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall reside on an ARCNET network using the ISO 8802-2 Data Link/Physical layer protocol for its communications.
 - c. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
- 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.

Bancroft Architects + Engineers

- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
 - 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 09-11

Bancroft Architects + Engineers

to him. A minimum of six (6) levels of security for operator access shall be provided.

09 - 11

- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air quality.
 - b. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature and humidity fall below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
 - c. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.

Bancroft Architects + Engineers

09 - 11

- d. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
- e. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.

Bancroft Architects + Engineers

f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.

09 - 11

- g. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- h. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.
- i. Chilled water Plant Operation: This program shall have the ability to sequence the multiple chillers to minimize energy consumption. The program shall provide sequence of operation as described on the drawings and include the following as a minimum:
 - Automatic start/stop of chillers and auxiliaries in accordance with the sequence of operation shown on the drawings, while incorporating requirements and restraints, such as starting frequency of the equipment imposed by equipment manufacturers.
 - 2) Secondary chilled water pumps and controls.
 - Generate chilled water plant load profiles for different seasons for use in forecasting efficient operating schedule.

Bancroft Architects + Engineers

- 4) Cooling Tower Operation Program: The objective of cooling tower control is to optimize chiller/tower energy use within the equipment restraints and minimum condenser water temperature limit recommended by the equipment manufacturer. Maintain chilled water plant performance records and print reports at intervals selected by the operator. It shall be possible for the operator to change the set points and the operating schedule.
- 5) The chilled water plant program shall display the following as a minimum:
 - a) Secondary chilled flow rate.
 - b) Secondary chilled water supply and return temperature.
 - c) Condenser water supply and return temperature.
 - d) Outdoor air dry bulb temperature.
 - e) Outdoor air wet bulb temperature.
 - f) Ton-hours of chilled water per day/month/year.
 - g) On-off status for each chiller.
 - h) Chilled water flow rate.
 - i) Chilled water supply and return temperature.
 - j) Operating set points-temperature and pressure.
 - k) Kilowatts and power factor.
 - 1) Current limit set point.
 - m) Date and time.
 - n) Operating or alarm status.
 - o) Operating hours.

2.10 SPECIAL CONTROLLERS

- A. Laboratory rooms and the fume hoods in those rooms shall be controlled to allow for a variable flow of conditioned air into the room, general exhaust from the room, and exhaust through the fume hood while maintaining a safe face velocity at the hood sash opening and proper space pressurization.
- B. Fume Hood Exhaust Air Controller: The air flow through the open face of the hood, regardless of sash position, shall be controlled at a face velocity between 30 to 36 meter per minute (100 fpm and 120 fpm). A velocity sensor controller located in a sampling tube in the side wall

Bancroft Architects + Engineers

of the hood shall control a damper in the hood discharge to maintain the face velocity.

09 - 11

- C. Room Differential Pressure Controller: The differential pressure in laboratory rooms, operating rooms and isolation rooms shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space, and display the value on its monitor. The sensor-controller shall meet the following as a minimum:
 - 1. Operating range: -0.25 to +0.25 inches of water column
 - 2. Resolution: 5 percent of reading
 - 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
 - 4. Analog output: 0-10 VDC or 4-20 ma
 - 5. Operating temperature range: 32°F-120°F

2.11 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.

Bancroft Architects + Engineers

 Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.

09 - 11

- 2) Psychiatric patient room sensor: sensor shall be flush with wall, shall not include an override switch, numerical temperature display on sensor cover, shall not include a communication port and shall not allow in-space User set-point adjustment. Setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Provide a stainless steel cover plate with an insulated back and security screws.
- d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
- e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- f. Wire: Twisted, shielded-pair cable.
- g. Output Signal: 4-20 ma.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Water flow sensors:
 - Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.

Bancroft Architects + Engineers

b. Retractor: ASME threaded, non-rising stem type with hand wheel.

09 - 11

- c. Mounting connection: 2 inch 150 PSI flange.
- d. Sensor assembly: Design for expected water flow and pipe size.
- e. Seal: Teflon (PTFE).
- 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BMCS: Digital pulse type.
- 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
- Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digit display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40° C to 60° C (-40° F to 140° F), 5 to 100° humidity.
 - b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
 - c. Nominal range (turn down ratio): 10 to 1.
 - d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a

Bancroft Architects + Engineers

09 - 11

time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet). Preamplifier for bi-directional flow measurement shall provide a directional contact closure from a relay mounted in the preamplifier.

- e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
- f. Ambient temperature effects, less than 0.005 percent calibrated span per $^{\circ}\text{C}$ ($^{\circ}\text{F})$ temperature change.
- g. RFI effect flow meter shall not be affected by RFI.
- h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.
- F. Steam Flow Sensor/Transmitter:
 - Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure.
 - a. Ambient conditions, -40° C to 80° C (-40° F to 175° F).
 - b. Process conditions, 900 kPa (125 psig) saturated steam.
 - c. Turn down ratio, 20 to 1.
 - d. Output signal, 4-20 ma DC.
 - e. Processor/Transmitter, NEMA 4 enclosure with keypad program selector and six digit LCD output display of instantaneous flow rate or totalized flow, solid state switch closure signal shall be provided to the nearest DDC panel for totalization.
 - 1) Ambient conditions, -20° C to 50° C (0° F -120° F), 0 95 percent non-condensing RH.
 - 2) Power supply, 120 VAC, 60 hertz or 24 VDC.
 - Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.
 - f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line, and shall have an isolation valve installed between the sensor and pressure source.
- G. Flow switches:
 - 1. Shall be either paddle or differential pressure type.

Bancroft Architects + Engineers

a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.

09 - 11

- b. Differential pressure type switches (air or water service) shallbe UL listed, SPDT snap acting, NEMA 4 enclosure, with scalerange and differential suitable for specified application.
- H. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.12 CONTROL CABLES

A. General:

- Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

Bancroft Architects + Engineers

6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.

09 - 11

- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.13 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have manufacturer's recommendation finish, setpoint range and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.

Bancroft Architects + Engineers

b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.

09 - 11

- c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
- d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: Except as specified in subparagraph 2 below, maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.

Bancroft Architects + Engineers

2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.

09-11

- 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating values shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.

Bancroft Architects + Engineers

c. Two-way 2-position valves shall be ball, gate or butterfly type.

09 - 11

- 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure
 (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.

F. Damper and Valve Operators and Relays:

- 1. Pneumatic operators, spring return type with non-ferrous metal bellows or diaphragm of neoprene or other elastomer. Bellows or diaphragm shall be of sufficient size so that a change in operating pressure of not more than two (2) percent of the total motor operating pressure range will be required to start the valve or damper moving. Provide positive positioning or sequencing relays with adjustable operating range and starting point for operators sequenced with other operators to permit adjustment of control sequences, except for control valves in confined spaces in terminal units, which may use springs with range selected to provide necessary sequencing. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel.
- 2. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.

Bancroft Architects + Engineers

3. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque. a. VAV Box actuator shall be mounted on the damper axle or shall be

09 - 11

- of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
- 4. See drawings for required control operation.

2.15 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station -- Pneumatic Type: NOT USED
- C. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in

Bancroft Architects + Engineers

09-11

flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.

- b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
- 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
 - b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
 - c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
- 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
 - b. Electronics Panel shall be A/C powered 120 VAC 24 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
 - c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output

Bancroft Architects + Engineers

flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.

09 - 11

- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to $160^\circ\text{F})$.
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density	
Area (sq.ft.)	Qty. Sensors
<=1	2
>1 to <4	4
4 to <8	6
8 to <12	8
12 to <16	12
>=16	16

- a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true

Bancroft Architects + Engineers

representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:

09 - 11

- Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
- 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
- 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
- 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.
- F. Airflow Synchronization:
 - Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of

Bancroft Architects + Engineers

09 - 11

±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.

2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Contracting Officer's Representative for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
 - 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
 - Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
 - 7. Install equipment level and plum.
- A. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and

Bancroft Architects + Engineers

09 - 11

cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.

- Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.

Bancroft Architects + Engineers

7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.

09 - 11

- Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
 - g. All pipe mounted temperature sensors shall be installed in wells.
 - h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
 - i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
 - 2. Pressure Sensors:

Bancroft Architects + Engineers

- a. Install duct static pressure sensor tips facing directly downstream of airflow.
- b. Install high-pressure side of the differential switch between the pump discharge and the check valve.

09-11

- c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from

Bancroft Architects + Engineers

other manufacturers as specified and required to make the system work as one system.

09 - 11

- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

09-11 performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.

09 - 11

- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration
 with database.
 - Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

 Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

----- END -----

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 09-11

Bancroft Architects + Engineers

02-01-20

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping for HVAC systems.
 - 3. Glycol-water piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EOUIPMENT.
- G. Section 23 07 11, HVAC AND BOILER PLANT INSULATION: Piping insulation.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- J. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- K. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- L. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- M. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS: Induction units, fan coil units, Unit Heaters and radiant ceiling panels.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers 02-01-20 basic designation only. Where conflicts occur these specifications and the VHA standard will govern. B. American Society of Mechanical Engineers (ASME): B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.3-2016......Malleable Iron Threaded Fittings: Classes 150 and 300 B16.4-2016.....Gray Iron Threaded Fittings: (Classes 125 and 250) B16.5-2017.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2018.....Factory Made Wrought Buttwelding Fittings B16.11-2016.....Forged Fittings, Socket-Welding and Threaded B16.18-2018.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-2018.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.24-2016.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 B16.39-2014.....Malleable Iron Threaded Pipe Unions: Classes 150, 250, and 300 B16.42-2016.....Ductile Iron Pipe Flanges and Flanged Fittings B31.9-2014.....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Vessel Code: BPVC Section VIII-2015.. Rules for Construction of Pressure Vessels C. American Society for Testing and Materials (ASTM): A47/A47M-2018.....Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2018.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2019.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-2004(R2019).....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers 02-01-20 A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A216/A216M-2018.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A307-2016.....Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A536-1984(R2019).....Standard Specification for Ductile Iron Castings B62-2017..... Standard Specification for Composition Bronze or Ounce Metal Castings B88-2016.....Standard Specification for Seamless Copper Water Tube F439-2019.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441/F441M-2015.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 D. American Welding Society (AWS): B2.1/B2.1M-2014.....Standard for Welding Procedure and Performance Specification E. Expansion Joint Manufacturer's Association, Inc. (EJMA): EJMA 2017..... Expansion Joint Manufacturer's Association Standards, Tenth Edition F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-2017.....Butterfly Valves SP-70-2014.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2014.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2014.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2014.....Gray Iron Globe and Angle Valves, Flanged and Threaded Ends Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

02-01-20 SP-110-2014.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-2018.....Gray Iron and Ductile Iron In-line, Spring-Loaded, Center-Guided Check Valves

G. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards2015.....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. All specified hydronic system components.
 - 11. Water flow measuring devices.
 - 12. Gauges.
 - 13. Thermometers and test wells.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:

23 21 13-4

1.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- E. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.
- F. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - 1. One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic AutoCAD and pdf format.
- H. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- I. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than oneyear old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
 - 1. All castings used for coupling housings, fittings, valve bodies,

etc., shall be date stamped for quality assurance and traceability. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - //As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 or newer provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water Heating Hot Water and Vent Piping:
 - 1. Steel: ASTM A53/A53M Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Cooling Coil Condensate Drain Piping:
 - From air handling units: Copper water tube, ASTM B88, Type M, or Schedule 40 PVC plastic piping.
 - From fan coil or other terminal units: Copper water tube, ASTM B88, Type M for runouts and Type L for mains.
- D. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 3.2 mm (1/8 inch) thick full-face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150-pound steel flanges, with Teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a

height of not less than three times the thickness of tube wall. Contract No. 36C26319D0022 Station Project No. 656-19-039

Bancroft-AE Project No. 18-116 23 21 13-8

Bancroft Architects + Engineers

```
02-01-20
```

Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.

B. Bronze Flanges and Flanged Fittings: ASME B16.24.

C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

2.5 FITTINGS FOR PLASTIC PIPING (NOT USED)

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. Dielectric gasket material shall be compatible with hydronic medium.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 50 mm (2 inch) and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ASME B1.20.1.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.4 m (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Ball Valves (Pipe sizes 50 mm (2 inch) and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chromeplated ball with full port and Teflon seat at 400 psig)working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 65 mm (2-1/2 inch) and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS SP-67, flange lug type rated

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20 1200 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Butterfly valves are prohibited for direct buried pipe applications.

- a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47/A47M electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
- b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) Gate Valves:
 - a) 50 mm (2 inches) and smaller: MSS SP-80, Bronze, 1035 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke. MSS SP-70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Globe valves shall be union bonnet with metal plug type disc.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for globe valves.
- 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for angle.
- F. Check Valves:
 - 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig), 45-degree swing disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-71 for check valves.
 - 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS SP-125 cast iron, ASTM A126, Class B, or steel, ASTM A216/A216M, Class WCB, or ductile iron, ASTM 536, flanged or wafer type.
 - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. //Ballstyle valve.
 - 2. A dual-purpose flow balancing valve and adjustable flow meter, with bronze or cast-iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure

fluctuations of 27 to 393 kPa (4 to 57 psig). Provide standard pressure Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 21 13-11

06/02/2023

Bancroft Architects + Engineers

02-01-20 taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:

- Gray iron ASTM A126 or brass body rated 1200 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
- Brass or ferrous body designed for 2070 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
- Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
- Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.
- I. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.9 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.
- D. Self-Averaging Annular Sensor Type: Brass or stainless-steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

2. Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in gpm.

- G. Portable Water Flow Indicating Meters:
 - Minimum 150 mm (6 inch) diameter dial, forged brass body, berylliumcopper bellows, designed for 1200 kPa (175 psig) working pressure at 121 degrees C (250 degrees F).
 - 2. Bleed and equalizing valves.
 - 3. Vent and drain hose and two 3 m (10 feet) lengths of hose with quick disconnect connections.
 - Factory-fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
 - 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.
- H. Permanently Mounted Water Flow Indicating Meters: Minimum 150 mm (6 inch) diameter, or 457 mm (18 inch) long scale, for 120 percent of design flow rate, direct reading in gpm, with three valve manifold and two shut-off valves.

2.10 STRAINERS

A. Y Type.

- Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (1/8 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - 1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165 psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
- 3. Provide ductile iron retaining rings and control units.

2.12 EXPANSION JOINTS (NOT USED)

2.13 HYDRONIC SYSTEM COMPONENTS

- A. Heat Exchanger (Water to Water): Shell and tube type, U-bend removable tube bundle, heating fluid in shell, heated fluid in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.001.
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Cast iron or steel.
 - 4. Construction: In accordance with ASME BPVC Section VIII for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of pumps, and other components, pre-piped and pre-wired supported on a welded steel frame or skid. Refer to Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING, for additional requirements.
- C. Air Purger: Cast iron or fabricated steel, 861 kPa (125 psig) water working pressure, for in-line installation.
- D. Tangential Air Separator: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless-steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless-steel strainer element having 5 mm (3/16 inch)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers 02-01-20 perforations and free area of not less than five times the crosssectional area of connecting piping.

- E. Diaphragm Type Pre-Pressurized Expansion Tank: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, welded steel shell, rustproof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 115 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).
- F. Closed Expansion (Compression) Tank: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, steel, rustproof coated. Provide gauge glass, with protection guard, and angle valves with tapped openings for drain (bottom) and plugged vent (top). Provide Form No. U-1.
 - 1. Horizontal tank: Provide cradle supports and following accessories:
 - a. Air control tank fittings: Provide in each expansion tank to facilitate air transfer from air separator, or purger, into tank while restricting gravity circulation. Fitting shall include an integral or separate air vent tube, cut to length of about 2/3 of tank diameter, to allow venting air from the tank when establishing the initial water level in the tank.
 - b. Tank drainer-air charger: Shall incorporate a vent tube, cut to above 2/3 of tank diameter, and drain valve with hose connection draining and recharging with air.
 - 2. Vertical floor-mounted expansion tank: Provide gauge glass, system or drain connection (bottom) and air charging (top) tappings. Provide gate valve and necessary adapters for charging system. Tank support shall consist of floor mounted base ring with drain access opening or four angle iron legs with base plates.
- G. Pressure Reducing Valve (Water): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 28 kPa (4 psig) above and below set point. Bronze, brass or iron body and bronze, brass or stainless-steel trim, rated 861 kPa (125 psig) working pressure at 107 degrees C (225 degrees F).

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- H. Pressure Relief Valve: Bronze or iron body and bronze or stainlesssteel trim, with testing lever. Comply with ASME BPVC Section VIII and bear ASME stamp.
- I. Automatic Air Vent Valves (where shown on drawings): Cast iron or semisteel body, 1035 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.14 WATER FILTERS AND POT CHEMICAL FEEDERS

A. See Section 23 25 00, HVAC WATER TREATMENT, paragraph, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.15 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gauges in water service.
- C. Range of Gauges: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): 101 kPa (30 inches Hg) to 690 kPa (100 psig).

2.16 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.
- B. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

- 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 101 kPa (30 inches Hg) to 690 kPa (100 psig) range.
- 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.17 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, twodegree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water and Glycol-Water: 0 to 38 degrees C (32 to 100 degrees F).
 - 2. Hot Water and Glycol-Water: 38 to 93 degrees C (100 to 200 degrees F).

2.18 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.19 ELECTRICAL HEAT TRACING SYSTEMS (NOT USED)

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20 altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:

1. Water treatment pot feeders and condenser water treatment systems. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- K. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- L. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 SEISMIC BRACING ABOVEGROUND PIPING (NOT USED)

3.5 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- B. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/s (5.9 f/s), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- C. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/s (5.9 f/s). Circulate each section for not less than 4 hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- D. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean makeup. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.
- 3.7 WATER TREATMENT (NOT USED)

3.8 ELECTRIC HEAT TRACING (NOT USED)

3.9 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.10 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

B. Components provided under this section of the specification will be tested as part of a larger system.

3.11 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

Bancroft Architects + Engineers

02-01-20

SECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A.Capacity: Gallons per minute (gpm) of the fluid pumped. Hydronic pumps for Heating, Ventilating and Air Conditioning.
- B.Definitions:
 - 1. Capacity: Gallons per minute (gpm) of the fluid pumped.
 - 2. Head: Total dynamic head in kPa (feet) of the fluid pumped.
 - 3. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.
- C.A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B.Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- Ε.
- F.Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G.Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- H.Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- I.Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 21 13, HYDRONIC PIPING.
- K. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B16.1-2015.....Cast Iron Pipe Flanges and Flanged Fittings: Classes 25, 125, and 250

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 21 23 - 1

06/02/2023

Bancroft Architects + Engineers

02-01-20

C.American Society for Testing and Materials (ASTM): A48/48M-2003(R2016)....Standard Specification for Gray Iron Castings B62-2017.....Standard Specification for Composition Bronze or Ounce Metal Castings

1.4 SUBMITTALS

- A.Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 23, HYDRONIC PUMPS", with applicable paragraph identification.
- C.Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.
- E.Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F.Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the

requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/

23 21 23 - 2

06/02/2023

Bancroft Architects + Engineers

G.Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

A.Design Criteria:

- 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
- 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
- 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
- 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
- 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
- 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in gpm and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- B.Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.6 AS-BUILT DOCUMENTATION

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 or newer provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E.Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

23 21 23 - 4

Bancroft Architects + Engineers

02-01-20 pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE MATERIALS

A.Furnish one spare seal and casing gasket for each pump to the COR Project Manager.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A.General:
 - Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1-1/2 times the designed pressure.
 - Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
 - General Construction Requirements

 Balance: Rotating parts, statically and dynamically.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

02-01-20

- b. Construction: To permit servicing without breaking piping or motor connections.
- c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT. Motors shall be TEFC and operate at 1750 RPM unless noted otherwise.
- d. Heating pumps shall be suitable for handling water to 107 degrees C (225 degrees F).
- e. Provide coupling guards that meet OSHA requirements.
- f. Pump Connections: Flanged.
- g. Pump shall be factory tested.
- h. Performance: As scheduled on the Contract Drawings.
- 5. Variable Speed Pumps:
 - a. The pumps shall be the type shown on the drawings and specified herein flex coupled to a TEFC motor.
 - b. Variable Speed Motor Controllers: Refer to Section 26 29 11, MOTOR CONTROLLERS and to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, VARIABLE SPEED MOTOR CONTROLLERS. Furnish controllers with pumps and motors.
 - c. Pump operation and speed control shall be as shown on the drawings.
 - d. Direct drive pumps with integrated variable frequency drive (VFD) utilizing the design pump curve programmed on board the built-in controller (also known as sensor-less, or self-sensing). Pump to comply with paragraphs in this section. VFD and motor to comply with Section 26 29 11, MOTOR CONTROLLERS and Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- B.In-Line Type, Base Mounted End Suction or Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48/A48M.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 861 kPa (125 psig), ASME B16.1.
 - 4. Casing Vent: Manual brass cock at high point.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- 5. Casing Drain and Gauge Taps: 15 mm (1/2 inch) plugged connections minimum size.
- 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
- 7. Shaft: Steel, Type 1045 or stainless steel.
- 8. Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
- 9. Shaft Sleeve: Bronze or stainless steel.
- 10. Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- 11. Base Mounted Pumps:
 - a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
 - b. Impeller Wear Rings: Bronze.
 - c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, bolted to the baseplate.
 - d. Bearings (Double-Suction pumps): Regreaseable ball or roller type.
 - e. Provide lip seal and slinger outboard of each bearing.
 - f. Base: Cast iron or fabricated steel for common mounting to a concrete base.
- 12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:
 - a. Body: Cast iron with steel inlet vanes and combination diffuserstrainer-orifice cylinder with 5 mm (3/16 inch) diameter openings for pump protection. Provide taps for strainer blowdown and gauge connections.
 - b. Provide adjustable foot support for suction piping.
 - c. Strainer free area: Not less than five times the suction piping.
 - d. Provide disposable startup strainer.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

02-01-20

2.2 VERTICAL TURBINE PUMP (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A.If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B.Follow manufacturer's written instructions for pump mounting and startup. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- C.Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- D.Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

3.2 STARTUP AND TESTING

- A.Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D.Verify that the piping system has been flushed, cleaned and filled.
- E.Lubricate pumps before startup.
- F.Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- G.Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- H.Field modifications to the bearings and or impeller (including trimming) are prohibited. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

23 21 23 - 8

Bancroft Architects + Engineers

replacement pump. All modifications to the pump shall be performed at the factory.

- I.Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- J.After several days of operation, replace the disposable startup strainer with a regular strainer in the suction diffuser.

3.3 COMMISSIONING

- A.Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B.Components provided under this section of the specification will be tested as part of a larger system.

3.4 DEMONSTRATION AND TRAINING

- A.Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B.Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam, condensate and vent piping inside buildings.
- B. Boiler plant and outside steam distribution piping is covered in specification Section 33 63 00, STEAM ENERGY DISTRIBUTION and Section 23 21 11, BOILER PLANT PIPING SYSTEMS.
- C. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 09 91 00, PAINTING.
- F. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT AND STEAM GENERATION.
- G. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- H. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- I. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- J. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- K. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Section 23 22 23, STEAM CONDENSATE PUMPS.

Section 23 25 00, HVAC WATER TREATMENT.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B1.20.1-2013.....Pipe Threads, General Purpose (Inch)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers 02-01-20 B16.5-2013......Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2012.....Factory Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.42-2016.....Ductile Iron Pipe Flanges and Flanged Fittings: Classes 150 and 300 B31.1-2018.....Power Piping B31.9-2014.....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Vessel Code (BPVC) -BPVC Section II-/2019 Materials BPVC Section VIII-2019 Rules for Construction of Pressure Vessels, Division 1 BPVC Section IX-2019/Welding, Brazing, and Fusing Qualifications C. American Society for Testing and Materials (ASTM): A53/A53M-2017.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2019.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A216/A216M-2019.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A285/A285M-2017.....Standard Specification for Pressure Vessel Plates, Carbon Steel, Low-and Intermediate-Tensile Strength A307-2019.....Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A516/A516M-2017.....Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service A536-1984(R2017).....Standard Specification for Ductile Iron Castings B62-2017.....Standard Specification for Composition Bronze or Ounce Metal Castings Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 23 22 13 - 2

Bancroft Architects + Engineers

D. American Welding Society (AWS):

B2.1/B2.1M-2014.....Specification for Welding Procedure and Performance Qualifications

Z49.1-2012.....Safety in Welding and Cutting and Allied Processes

- E. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.:
- SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves
 F. Military Specifications (Mil. Spec.):
- MIL-S-901D-2017.....Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems
- G. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- H. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards-2015....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 13, STEAM AND CONDENSATE HEATING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.

9. Expansion compensators. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

- 10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
- 11. All specified steam system components.
- 12. Gauges.
- 13. Thermometers and test wells.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
- E. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. The products and execution of work specified in this section shall conform to the referenced codes and standards as required by the

specifications. Local codes and amendments shall be enforced, along Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/

23 22 13 - 4

06/02/2023

02-01-20

Bancroft Architects + Engineers

requirements shall always apply. Any conflicts shall be brought to the attention of the COR.

- C. Welding Qualifications: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX, AWS Z49.1 and AWS B2.1/B2.1M.
 - 2. Comply with provisions in ASME B31.9 or ASME B31.1.
 - Certify that each welder and welding operator has passed AWS qualification tests for welding processes involved and that certification is current and recent. Submit documentation to the COR.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- D. ASME Compliance: Comply with ASME B31.9 or ASME B31.1 for materials, products, and installation. Safety valves and pressure vessels shall bear appropriate ASME labels.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

02-01-20

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 or newer provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

Bancroft Architects + Engineers

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; or ASTM A106/A106M Grade B, seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction or use of close nipples is not acceptable.
 - 2. Forged steel, socket welding or threaded: ASME B16.11, 13,790 kPa (2000 psig) class with ASME B1.20.1 threads. Use Schedule 80 pipe and fittings for threaded joints. Lubricant or sealant shall be oil and graphite or other compound approved for the intended service.
 - 3. Unions: Forged steel, 13,790 kPa (2000 psig) class or 20,685 kPa (3000 psig) class on piping 50 mm (2 inches) and under.
 - 4. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Cast iron fittings or piping is not acceptable for steam and steam condensate piping.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 3. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with nonasbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 400 degrees C (750 degrees F) and 10,342 kPa (1500 psig).

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

02-01-20

- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 DIELECTRIC FITTINGS

- A. Provide where dissimilar metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 50 mm (2 inches) and smaller, screwed end steel gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.1 m (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, bronze wedges and Monel or stainless-steel seats, threaded ends, rising stem, and union bonnet.
 - b. 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke.
 - High pressure steam 110 kPa (16 psig) and above system): Cast steel body, ASTM A216/A216M grade WCB, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 2) All other services: Forged steel body, Class B, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze face wedge and seats, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, and renewable seat rings.
 - b. 65 mm (2-1/2 inches) and larger:
 - Globe valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: Steel body, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronzefaced disc (Teflon or composition facing permitted) and seat, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
 - 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: Cast steel 1035 kPa (150 psig), union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger:
 - Angle valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- F. Swing Check Valves:
 - 1. 50 mm (2 inches) and smaller: Cast steel, 1035 kPa (150 psig), 45degree swing disc.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

02-01-20

- 2. 65 mm (2-1/2 inches) and Larger:
 - a. Check valves for high pressure steam 110 kPa (16 psig) and above system: Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1035 kPa (150 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel, rated for saturated steam at 1034 kPa (150 psig) threaded ends.
 - 2. 65 mm (2-1/2 inches) and larger: Cast steel rated for 1034 kPa (150 psig) saturated steam with 1034 kPa (150 psig) ASME flanged ends or forged steel with 1724 kPa (250 psig) ASME flanged ends.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel body.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, cast steel body.
- D. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (1/8 inch) diameter perforations for liquids.

2.7 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

2.8 EXPANSION JOINTS (NOT USED)

02-01-20

2.9 FLEXIBLE BALL JOINTS

A. Design and Fabrication: One-piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1725 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 762 mm (30 inches). Joints through 355 mm (14 inches) shall have forged pressure retaining members; while size 406 mm (16 inches) through 762 mm (30 inches) shall be of one-piece construction.

B. Material:

- Cast or forged steel pressure containing parts and bolting in accordance with ASME BPVC Section II or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME BPVC Section II SA 515, Grade 70.
- Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - Low pressure leakage test: 41 kPa (6 psig) saturated steam for 60 days.
 - 2. Flex cycling: 800 Flex cycles at 3447 kPa (500 psig) saturated steam.
 - Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
 - Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
 - 5. Vibration: 170 hours on each of three mutually perpendicular axes at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.10 inch) double amplitude on a single ball joint and 3 ball joint off set.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

2.10 STEAM SYSTEM COMPONENTS

- A. Heat Exchanger (Steam to Hot Water): Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.00018 m^2K/W (0.001 ft^2hrF/Btu).
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Steel.
 - 4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of heat exchangers, pumps, and other components, pre-piped and pre-wired and supported on a welded steel frame or skid.
- C. Steam Pressure Reducing Valves in PRV Stations:
 - Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
 - Service: Provide controlled reduced pressure to steam piping systems.
 - Pressure control shall be smooth and continuous with maximum drop of 10 percent deviation from set pressure. Maximum flow capacity of each valve shall not exceed capacity of downstream safety valve(s).
 - 4. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, Monel, or similar durable material.
 - a. Pressure rating for high pressure steam: Not less than 1035 kPa (150 psig) saturated steam.
 - b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

5. Select pressure reducing values to develop less than 85 db(A) at 1.5 m (5 feet) elevation above adjacent floor, and 1.5 m (5 feet) distance in any direction. Inlet and outlet piping for steam pressure reducing values shall be Schedule 80 minimum for required distance to achieve required levels or sound attenuators shall be applied.

- D. Safety Valves and Accessories: Comply with ASME BPVC Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown. Valve shall have stainless steel seats and trim.
- E. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - 2. Trap bodies: Steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. The use of raised face flange is required on pipe sizes 1½ inch and above. The use of unions is acceptable for pipe sizes below 1½ inches. For systems without relief valve traps shall be rated for the pressure upstream of the steam supplying the system.
 - 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or Monel metal.
 - 4. Valves and seats: Suitable hardened corrosion resistant alloy.
 - 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
 - 6. Floats: Stainless steel.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- F. Thermostatic Air Vent (Steam): Steel body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.

G. Steam Humidifiers:

- 1. Fabrication requirements:
 - a. Tank: Stainless steel.
 - b. Enclosed cabinet, coated steel construction and air gap between cabinet and insulated tank.
 - c. Steam outlet on top of tank configured to connect to hose, pipe, or flange connection.
- 2. Mounting: Humidifier shall be mounted on trapeze hangers with threaded steel rods, hardware, and predrilled angle irons.
- 3. Water requirements: The humidifier shall be capable of generating steam from tap, softened, or DI/RO water.
- 4. Drain: An electric operated drain valve shall be mounted on the humidifier assembly to allow tank to drain automatically at the end of a humidification season. Positive drainage/blow-down using a drain pump, drawing water from the bottom of the tank, maximizing mineral evacuation.
- 5. Steam trap and strainer: Humidifier shall include a float/thermostatic steam trap and steam supply line strainer.
- 6. Controls: Control subpanel shall be factory-attached to humidifier with all wiring between subpanel and humidifier completed at factory. A wiring diagram shall be included. The controller shall be microprocessor based and shall have the following features or functions:
 - a. Web interface shall have same functionality as the unit keypad/display and shall allow multiple remotely located users to simultaneously view system operation and/or change system parameters. Web interface shall have password-protected secure

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20 access and shall be compatible with standard Internet browsers. Web interface shall connect directly to a personal computer or through a system network via Ethernet cable and shall be interoperable with any communication network.

- b. Redundant low water safety control.
- c. Fully modulating (0 to 100 percent) control of humidifier outputs.
- d. Water level control: Automatic refill, low water cutoff, field adjustable skimmer bleed off functions and automatic drain-down of humidifier.
- e. Temperature sensor: A factory mounted sensor, with a temperature range of -40 to 121 degrees C (-40 to 250 degrees F) mounted on the humidifier to enable the following functions:
 - 1) Maintain the evaporating chamber water temperature above freezing.
 - 2) Maintain a user-defined preset evaporating chamber water temperature.
 - 3) Allow rapid warm-up of water in evaporating chamber after a call for humidity, providing 100% operation until steam production occurs.
- f. USB port on the control board for software updates, data backups, and data restoration.
- g. Up-time optimizer function to keep humidifier(s) operating through conditions such as fill, drain, or run-time faults, as long as safety conditions are met, minimizing production downtime.
- h. Real-time clock to allow time-stamped alarm/message tracking, and scheduled events.
- i. Factory commissioning of humidifier and control board, including system configuration as-ordered, factory unit testing, and operation with water before shipping.Unit-mounted keypad/display operable within a temperature range of 0 to 70 degrees C (32 to 158 degrees F), and provides backlighting for viewing in low light.
- j. Alarms, unit configuration, and usage timer values shall remain in nonvolatile memory indefinitely during a power Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- k. The controls shall monitor, control, and/or adjust the following
 parameters:
 - Relative humidity (RH) set point, actual conditions in the space (from humidity transmitter), RH offset.
 - Dew point set point, actual conditions in the space (from dew point transmitter), dew point offset.
 - Relative humidity (RH) duct high limit set point (switch) and actual conditions.
 - Relative humidity (RH) duct high limit set point, actual conditions (from transmitter), high limit span, and high limit offset.
 - 5) Total system demand in % of humidifier capacity.
 - 6) Total system output in kg/hr (lb/hr).
 - Drain/flush duration, allowed days, and frequency based on usage.
 - 8) End-of-season drain status (on standard water systems and if ordered as a DI water option) and hours humidifier is idle before end of season draining occurs.
 - Window glass surface temperature in percent RH offset application using separate sensor with programmable offset.
 - Air temperature or other auxiliary temperature monitoring with programmable offset using separate sensor.
 - 11) System alarms and system messages, current and previous.
 - 12) Adjustable water skim duration.
- Programmable outputs for remote signaling of alarms and/or messages, device activation (such as a fan), or for signaling tank heating and/or steam production.
- m. System diagnostics that include:
 - 1) Test outputs function to verify component operation.
 - Test humidifier function by simulating demand to validate performance.
 - 3) Data collection of RH, air temperature, water use, energy use, alarms, and service messages for viewing from the keypad/display or Web interface.
 - 4) Service notification scheduling.

5) Password-protected system parameters. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20

- 6) Keypad/display or Web interface displays in English.
- 7) Numerical units displayed in inch-pound or SI units.
- 7. Other humidifier control features:
 - a. Interoperability using BACnet MS/TP.
 - b. Water level control for DI/RO water: System shall provide for continuous control of water level and will accommodate the use of deionized or reverse osmosis water with resistance up to 18 M-ohm/cm. System shall include:
 - Water level sensing unit comprised of a float operated stainless steel valve for water makeup.
 - 2) Low water cutoff float switch.
 - Operation within inlet water supply pressure range of 170 to 550 kPa (25 to 80 psig).
 - c. Access panel interlock switch: The control subpanel shall have an interlock control switch with manual override to remove control voltage when access panel is opened.
 - d. Removable keypad/display: Provide a keypad/display with cable for remote use.
 - e. Control input accessory:
 - 1) Cold snap offset transmitter: A window surface temperature transmitter, operating temperature range -29 to 71 degrees C (-20 to 160 degrees F), shall be provided for field installation. Transmitter shall supply its signal (4 to 20 mA) to the microprocessor control system, which shall lower the indoor RH set point to a level 5 percent or more below the dew point temperature during a cold spell, thus preventing window condensation. The indoor RH shall be automatically returned to the normal setting when the glass temperature rises.
 - 2) Airflow proving switch, pressure type: Airflow proving switch shall be diaphragm-operated with pitot tube for field installation. Switch shall have an adjustable control point range of 12.5 to 2988 Pa (0.05 to 12 inch WG) Operating temperature range -40 to 82 degrees C (-40 to 180 degrees F). Compatible with 24, 120, and 240 VAC.

3) Airflow proving switch, sail type: Airflow proving switch shall be a sail operated electric switch for field Contract No. 36C26319D0022

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

installation. Switch makes at 1.3 m/s (250 feet per minute), breaks at 0.4 m/s (75 feet per minute). Maximum operating temperature for sail: 77 degrees C (170 degrees F). Maximum operating temperature for switch: 52 degrees C (125 degrees F).

- 8. Distribution Manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:
 - a. Duct section height exceeds 900 mm (36 inches).
 - b. Duct air velocity exceeds 5.1 m/s (1000 feet per minute).
 - c. If within 900 mm (3 feet) upstream of fan, damper or pre-filter.d. If within 3 m (10 feet) upstream of after-filter.
 - e. .
- 9. Provide solid state control module with LED backlit LCD display and LED pilot lights to indicate on-off, high pressure, low pressure, low water and water feed. Control module shall allow the local adjustment of pressure limits on display screen. Control module shall have alarm light and alarm horn with built in alarm silence relay. Control module shall be supplied with dry contact closure outputs to indicate to building automation controls (BAC) the occurrence of power on, high pressure, low pressure, low water and water feed. The control module shall allow the BAC to turn the unfired steam generator on or off through a remote relay suitable for 24 VAC, 1 amp. The control module shall allow the BAC to remotely monitor the operating pressure. Control module shall be supplied with an on-off switch and shall be mounted in a NEMA 4 panel. All solenoids and limits shall be 24 VAC.
- H. Steam Hose and Accessories: Hose shall be sufficiently flexible to be placed in a 1.2 m (4 feet) diameter coil.
 - Furnish and install in the mechanical room housing each PRV station a 7.6 m (25 feet) length of 15 mm (1/2 inch) ID steam hose, rated 861 kPa (125 psig) and a hose rack. In one end of the hose install a quick-couple device, suitable for steam service, to match corresponding devices in the PRV blowdown connections.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- Hose storage rack: Wall-mounted, steel, iron or aluminum, semicircular shape, with capacity to store 7.6 m (25 feet) of 15 mm (1/2 inch) ID steam hose.
- I. Steam Flow Meter/Recorder: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Steam Exhaust Head: Cast iron, fitted with baffle plates, to trap and drain condensed water.

2.11 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide steel, lever handle union cock. Provide steel or stainlesssteel pressure snubber for gauges in water service. Provide steel pigtail syphon for steam gauges.
- C. Pressure gauge ranges shall be selected such that the normal operating pressure for each gauge is displayed near the midpoint of each gauge's range. Gauges with ranges selected such that the normal pressure is displayed at less than 30 percent or more than 70 percent of the gauge's range are prohibited. The units of pressure shall be psig.

2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug. Pressure/temperature plug is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 762 mm (30 inches) Hg to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.13 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

02-01-20

2.14 ELECTRICAL HEAT TRACING SYSTEMS (NOT USED)

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping and another surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20 end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.

- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross-sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping 25 mm (1 inch) in 12 m (40 feet) 0.25 percent in direction of flow. Provide a drip pan elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 300 mm (12 inches) above the roof or through the wall minimum 2.4 m (8 feet) above grade with down turned elbow.

3.2 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - 1. Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.
 - 2. Perform all welding operations required for construction and installation of the piping systems.

B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

 $02{-}01{-}20$ the applicable portions of ASME B31.1, AWS B2.1/B2.1M, AWS Z49.1, and also as outlined below.

- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.
- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- F. Alignment: Provide approved welding method for joints on all pipes greater than 50 mm (2 inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (1 foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:
 - 1. Perform radiographic examination of 50 percent of the first 10 welds made and 10 percent of all additional welds made. The COR reserves the right to identify individual welds for which the radiographic examination must be performed. All welds will be visually inspected by the COR. The VA reserves the right to require testing on additional welds up to 100 percent if more than 25 percent of the examined welds fail the inspection.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

02-01-20

- 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
- 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR and the commissioning agent shall be given a copy of all reports to be maintained as part of the project records and shall review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening are prohibited. Welders responsible for defective welds must be requalified prior to resuming work on the project.
- J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Steel Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast steel flange.

3.4 EXPANSION JOINTS (BELLOWS AND SLIP TYPE) (NOT USED)

3.5 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (24 pounds) independently of connecting piping.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- On pipe size 1 ½ inch and above a raised face flange is required to allow for removal of the steam trap without disturbing surrounding piping.
- On pipe size below 1 ½ inch raised face flanges or unions may be used to allow for removal of the traps.

3.6 SEISMIC BRACING (NOT USED)

3.7 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.
- D. Prepare and submit test and inspection reports to the COR within 5 working days of test completion and prior to covering the pipe.
- E. All tests shall be witnessed by the COR, their representative, or the Commissioning Agent and be documented by each section tested, date tested, and list or personnel present.

3.8 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: The piping system shall be flushed clean prior to equipment connection. Cleaning includes pulling all strainer screens and cleaning all scale/dirt legs during startup operation. Contractor shall be responsible for damage caused by inadequately cleaned/flushed systems.

3.9 ELECTRIC HEAT TRACING (NOT USED)

3.10 STARTUP AND TESTING

A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

various items of equipment shall be performed simultaneously with the system of which each item is an integral part.

- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.11 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.12 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

02-01-20

Bancroft Architects + Engineers

04-01-20

SECTION 23 22 23 STEAM CONDENSATE PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam condensate pumps for Heating, Ventilating and Air Conditioning.
- B. Definitions:
 - Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped.
 - 2. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- Ε.
- F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- H. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- I. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 23, STEAM CONDENSATE PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights,

Bancroft Architects + Engineers

materials, applications, standard compliance, model numbers, size, and capacity.

04 - 01 - 20

- 1. Pumps and accessories.
- 2. Motors and drives.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and if specified, for dual parallel pump operation.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.4 QUALITY ASSURANCE

A. Design Criteria:

- Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
- 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
- 3. Select pumps so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
- Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve including one pump operation in a parallel or series pumping installation.

Bancroft Architects + Engineers

5. Provide all electric-powered pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.

04-01-20

- 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in gpm and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- 9. Furnish one spare seal and casing gasket for each pump to the COR.
- B. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

04-01-20

at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- As-built drawings are to be provided, with a copy of them on AutoCAD version 2013 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:

Bancroft Architects + Engineers

04-01-20

- B. American Iron and Steel Institute (AISI): AISI 1045 2013.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416 2016.....Type 416 Stainless Steel
- C. American National Standards Institute (ANSI): ANSI B15.1-2000....Safety Standard for Mechanical Power Transmission Apparatus

ANSI B16.1-2015.....Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800

- D. American Society for Testing and Materials (ASTM): A48-2016.....Standard Specification for Gray Iron Castings B62-2016....Standard Specification for Composition Bronze or Ounce Metal Castings
- E. Maintenance and Operating Manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- PART 2 PRODUCTS

2.1 CONDENSATE PUMP, PAD-MOUNTED

- A. General: Factory assembled unit consisting of vented receiver tank, motor-driven pumps, interconnecting piping and wiring, motor controls (including starters, if necessary) and accessories, designed to receive, store, and pump steam condensate.
- B. Receiver Tank: Cast iron with threaded openings for connection of piping and accessories and facilities for mounting float switches. Receivers for simplex pumps shall include all facilities for future mounting of additional pump and controls.
- C. Furnish seals for condensate pump with a minimum temperature rating of 121 degrees C (250 degrees F).
- D. Centrifugal Pumps: Bronze fitted with mechanical shaft seals.
 - 1. Designed to allow removal of rotating elements without disturbing connecting piping or pump casing mounting.
 - 2. Shafts: Stainless steel, Type 416 or alloy steel with bronze shaft sleeves.
 - 3. Bearings: Regreaseable ball or roller type.
 - 4. Casing wearing rings: Bronze.

Bancroft Architects + Engineers

E. Motors: Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.

04 - 01 - 20

- F. Pump Operation:
 - Float Switches: NEMA 4, mounted on receiver tank, to start and stop pumps in response to changes in the water level in the receiver and adjustable to permit the controlled water levels to be changed. Floats and connecting rods shall be copper, bronze or stainless steel.
 - 2. Alternator: Provide for duplex units to automatically start the second pump when the first pump fails in keeping the receiver water level from rising and to alternate the order of starting the pumps to equalize wear. For units 0.25 kW (1/3 hp) and smaller, the alternator may be the mechanical type for use in lieu of float switches.
- G. Control Cabinet for 3 Phase (0.37 kW (1/2 hp) and larger) Units: NEMA 4, UL approved, factory wired, enclosing all controls, with indicating lights, manual switches and resets mounted on the outside of the panel. Attach cabinet to the pump set with rigid steel framework, unless remote mounting is noted on the pump schedule.
 - Motor starters: Magnetic contact types with circuit breakers or combination fusible disconnect switches. Provide low voltage control circuits (120-volt maximum) and HOA switches for each pump.
 - 2. Indicating lights for each pump: Green to show that power is on, red to show that the pump is running.
- H. Electric Wiring: Suitable for 94 degrees C (200 degrees F) service; enclosed in liquid-tight flexible metal conduit where located outside of control cabinet.
- I. Receiver Accessories:
 - Thermometer: 38 to 216 degrees C (100 to 420 degrees F), mounted below minimum water level.
 - 2. Water level gauge glass: Brass with gauge cocks which automatically stop the flow of water when the glass is broken. Provide drain on the lower gauge cock and protection rods for the glass.

Bancroft Architects + Engineers

2.2 CONDENSATE PUMP, SUMP TYPE

- A. General: Factory assembled unit consisting of motor-driven pump(s) mounted on a horizontal cover plate bolted to a vented sump-type receiver, interconnecting wiring and piping, motor controls and accessories, designed to receive, store, and pump steam condensate.
- B. Receiver Tank: Vertical, cylindrical, cast iron sides and bottom, designed for service underground or below the floor. Inlet connection shall be located nine inches below the cover plate. Provide floor mounting gasket.
- C. Receiver Cover Plate: Heavy gauge steel designed to support weight of pumps, motors, and accessories and support foot traffic with no deflection. Provide for mounting of pumps, motor and accessories by bolting to the cover. Provide threaded openings for piping connections and a bolted inspection plate for viewing interior of receiver. All bolted connections to cover plate, and between cover plate and receiver, shall be gasketed so that no vapor will escape into the room.
- D. Furnish seals for condensate pump with a minimum temperature rating of 121 degrees C (250 degrees F).
- E. Pumps: Centrifugal type, vertical extended shaft, bronze fitted, flexible-coupled, designed for submerged operation.
 - 1. Shaft: Stainless steel, Type 416.
 - 2. Shaft bearings: Bronze, water lubricated.
 - 3. Shaft seal at cover plate: Packed type with bronze packing gland.
 - Thrust bearings: Regreaseable ball type located above the cover plate.
 - 5. Discharge pipes: Terminate above the cover plate.
 - Pump-motor mounting: Bolted to brackets bolted to the cover plate. Removal of one pump shall not affect operation of the second pump.
- F. Motors: Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- G. Pump Operation:
 - Float Switches: NEMA 1, mounted on receiver tank, to start and stop pumps in response to changes in the water level in the receiver, and adjustable to permit the controlled water levels to be changed.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023 04-01-20

Bancroft Architects + Engineers

\$04-01-20\$ Floats and connecting rods shall be copper, bronze or stainless steel.

- 2. Alternator: Provide for duplex units to automatically start the second pump when the first pump fails in keeping the receiver water level from rising and to alternate the order of starting the pumps to equalize wear. For units 0.25 kW (1/3 hp) and smaller, the alternator may be the mechanical type for use in lieu of float switches.
- H. Electric Wiring: Suitable for 94 degrees C (200 degrees F) service; enclosed in liquid-tight flexible metal conduit where located outside of control cabinet.

2.3 VACUUM PUMP, HEATING

- A. General: Factory assembled unit consisting of water storage and air separating facilities, duplex water pumps, duplex air pumps, motors, controls and accessories, designed to receive, store, and pump the steam condensate from a vacuum return system. The unit shall also produce the required vacuum.
- B. Receiver Tank: Cast iron or galvanized steel and shall include water storage and air separation chambers.
- C. Water and Air Pumps: Centrifugal type, bronze fitted, with mechanical shaft seals.
 - Performance: Rating based on condensate at 71 degrees c (160 degrees
 F) and 20 kPa (6 inches of mercury vacuum). Perform test in accordance with factory instructions.
 - 2. Design pump to allow removal of rotating elements without disturbing connecting piping or pump casing mounting.
 - 3. Shafts: Stainless steel.
 - 4. Bearings: Grease-lubricated ball or roller type.
 - 5. Casing Wear Rings: Bronze.
- D. Motors: Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- E. Air and Water Pump Operation:
 - 1. Adjustable float switches: Mounted on receiver tank, to start and stop water pumps in response to changes in the water level in the

Bancroft Architects + Engineers

04-01-20

receiver. Floats and connecting rods shall be copper, stainless steel, or bronze.

- Adjustable vacuum switches: Mounted on receiver tank, to start and stop air pumps in response to vacuum requirements of the heating system.
- 3. Alternators of water pumps and for air pumps: To alternate the sequence of starting the pumps and to automatically start the second air or water pump when the first pump fails to meet the air or water demand.
- F. Control Cabinet for 3 Phase (0.37 kW (1/2 hp) and Larger) Units: NEMA 4, UL approved, factory wired, enclosing all controls, with indicating lights, manual switches and resets mounted on the outside of the panel. Attach cabinet to the pump set with rigid steel framework, unless remote mounting is noted on the pump schedule.
 - Motor starters: Magnetic contactor types with circuit breakers or combination fusible disconnect switches. Provide low voltage control circuits (120-volt maximum) and HOA switches for each pump.
 - 2. Indicating lights for each pump: Red to show that the pump is running, green to show pump is off.
- G. Electric Wiring: Suitable for 94 degrees C (200 degrees F) service; enclosed in liquid tight flexible metal conduit where located outside of control cabinet.
- H. Accessories Required:
 - 1. Thermometer: Mounted on receiver below minimum water level.
 - Water level gauge: Mounted on each compartment of receiver. Provide gauge cocks which automatically stop the flow of water when the glass is broken. Provide gauge glass protection rods and a drain on the lower gauge cock.
 - Compound gauge. Refer to Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
 - Temperature limit switch: To automatically admit cooling water to the air separation chamber when air separation water temperature exceeds the manufacturer's recommended limit.
 - 5. Automatic water make-up control to the air separation changes: Float switch and solenoid valve. Provide manual by-pass valve.

Bancroft Architects + Engineers

Muffler: When required to prevent the air vent sound from exceeding
 90 db(A) at a distance of 1.8 m (6 feet) from the unit.

04 - 01 - 20

 Vacuum breaker: Minimum adjustment range 20 to 50 kPa (6 to 15 inches of mercury), to protect the pump unit from excessive vacuum.

2.4 PRESSURE POWERED CONDENSATE PUMP

A. Pressure-Powered Pump Packages:

- Pump packages shall be furnished and installed as a packaged assembly of the types, sizes, capacities, and characteristics as shown on the drawings. Pump package shall be rated for not less than 185 degrees C (365 degrees F), maximum condensate temperatures.
- 2. Pump package(s) shall come completely piped and mounted on a steel skid including (1) receiver/reservoir, two positive displacement pressure-powered pumps as scheduled, interconnecting piping and valves, and all accessories as hereafter specified below:
 - a. The receiver shall be of a steel elevated design, warranted for 1 year against defects in material and workmanship. Receiver shall be 150 psig ASME labeled and coded. Receiver shall be sized for the required condensate storage volume and flash steam capacity. Receiver shall be horizontally mounted and have openings of the appropriate size and number including: (2) inlets, (1) vent opening, (1) NPT drain with pipe plug, (1) NPT anode opening with anode, and gauge glass openings with gauge glass set consisting of (2) brass isolation valves and guard rods, and red-line tubular glass. Replaceable magnesium anode, which retards the corrosive action of most waters and adds to the service life of the tanks, shall be furnished with each receiver for corrosion protection.
 - b. Pressure-powered pumps shall be non-electric as shown on the drawings. Units shall be constructed of 1034 kPa (150 psig) ASME labeled and coded fabricated steel body, shall be float operated, and contain a condensate inlet baffle. Each unit shall have (1) inlet check valve, (1) outlet check valve, and gauge glass set with isolation valves.

Bancroft Architects + Engineers

c. The float operating mechanism shall have all moving components constructed of stainless steel and be of a snap acting design with no external seals or packing. The float mechanism shall contain a reinforced stainless-steel float, (2) 300 series stainless steel open coil design springs, and spring calibration pins.

04 - 01 - 20

- d. Pressure-powered pumps shall be of a non-cavitating design capable of operation on systems up to the maximum working pressure of the tank rating using steam, compressed air, or other compatible inert gas as the supply (motive) pressure. Units shall be capable of operating at temperatures up to 185 degrees C (365 degrees F) when pumping from a 'closed' system using a compatible motive gas. Balance and fine tune motive pressure to be 138 kPa (20 psig) higher than the static backpressure.
- e. Package shall include interconnecting piping between receiver/reservoir and the positive displacement pressure-powered pump(s). Interconnecting suction (fill) line shall be provided to each unit and each suction (fill) line shall include a gate valve for isolation. Pipe material and schedule shall comply with Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- f. Manufacturer shall provide the following for field installation on each pressure-powered pump:
 - 1) Digital Cycle counter
 - 2) Removable insulation jacket
 - 3) Pressure gauge
 - 4) Drain piping
- g. Provide the following components for each pump:
 - 1) Motive pressure reducing valve
 - 2) Safety relief valve(s)
 - 3) Motive pressure inlet strainer
 - 4) Pressure gauge with pigtail, as required
 - 5) Motive pressure drip trap(s)
 - 6) Motive pressure line check valve(s)
 - 7) Motive pressure shut-off valve

Bancroft Architects + Engineers

3. The package shall be factory tested as a complete unit using steam as the motive pressure. The pump manufacturer shall furnish appropriate assembly and parts drawings, and installation and operation manuals. The package shall be shipped completely assembled, or with connection match marks if package must be shipped as sub-assemblies.

04 - 01 - 20

- B. Removable Insulation Jacket:
 - The insulation jacket should be of sewn construction with Velcro fasteners and have openings for inlet, outlet, drain, and gauge glass.
 - 2. Materials:
 - a. Liner and jacket shall be silicone impregnated heavy duty glass fiber rated for a maximum temperature of 260 degrees C (500 degrees F).
 - b. Insulation shall be 25 mm (1 inch) minimum thickness, Type E needled glass fiber mat rated for a maximum temperature of 650 degrees C (1200 F).
 - c. Jacket shall be sewn with Nomex thread with a UV inhibitor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. Follow manufacturer's written instructions for pump mounting and startup. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- C. Sequence of installation for base-mounted pumps:
 - 1. Level and shim the unit base and grout to the concrete pad.
 - 2. Shim the driver and realign the pump and driver. Correct axial, angular or parallel misalignment of the shafts.
 - 3. Connect properly aligned and independently supported piping.
 - 4. Recheck alignment.
- D. Pad-mounted Condensate Pump or Vacuum Pump: Level, shim, bolt, and grout the unit base onto the concrete pad.

Bancroft Architects + Engineers

E. Sump Type Condensate Pump: Apply two coats of asphalt or bituminous compound on the exterior of the receiver tank, and mount level and flush in the floor with waterproofing gaskets and grouting to prevent ground water from entering the building from around the receiver.

04-01-20

F. Coordinate location of thermometer and pressure gauges as per Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

3.2 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Verify that the piping system has been flushed, cleaned and filled.
- E. Lubricate pumps before startup.
- F. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- G. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- H. Field modifications to the bearings and or impeller (including trimming) are prohibited. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

04-01-20

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

Bancroft Architects + Engineers

02-01-20

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Chemical treatment for open loop systems.
 - 4. Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. During this period perform monthly tests of the cooling tower for Legionella pneumophila and submit reports stating Legionella bacteria count per millimeter. These tests shall be conducted in a certified laboratory and not by a technician in the field. Minimum service during construction/start-up shall be 6 hours.
- C. Field Quality Control and Certified Laboratory Reports: During the one year guarantee period, the water treatment laboratory shall provide not

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

less than 12 reports based on on-site periodic visits, as stated in paragraph 1.3.B, sample taking and testing, and review with VA personnel, of water treatment control for the previous period. In addition to field tests, the water treatment laboratory shall provide certified laboratory test reports. These monitoring reports shall assess chemical treatment accuracy, scale formation, fouling and corrosion control, and shall contain instructions for the correction of any out-of-control condition.

- D. Log Forms: Provide one year supply of preprinted water treatment test log forms.
- E. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.
 - 3. Chemical treatment for open loop systems, including installation and operating instructions.
 - 4. Glycol-water system materials, equipment, and installation.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2017.....National Electric Code (NEC)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20 C. American Society for Testing and Materials (ASTM): F441/F441M-02-2018 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.
- 2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS NOT USED

2.3 CHEMICAL TREATMENT FOR OPEN LOOP SYSTEM(S) - NOT USED

2.4 GLYCOL-WATER SYSTEM

- A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
- B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: 30 percent for chilled water system and heating hot water system.
- C. Pot Feeder Make-up Unit: By pass type for chemical treatment, schedule 3.5 mm (10 gauge) heads, 20 mm (3/4-inch) system connections and large neck opening for chemical addition. Feeders shall be 19 Liters (5 gallon) minimum size.
- D. Glycol-Water Make-up System:
 - Glycol-Water storage tank: Self supporting polyethylene, minimum 90 mil thickness, with removable cover or black steel with 90 mil polyethylene insert. Capacity shall be 213 L (55 gallons), with

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

23 25 00 - 3

Bancroft Architects + Engineers

02-01-20 approximate diameter of 584 mm (23 inches) and height of 914 mm (36 inches). Reinforced threaded pipe connections shall be provided for all connections. Provide identification for tank showing name of the contents.

- 2. Glycol-Water make-up pump: Bronze fitted, self-priming, high head type suitable for pumping a 33 percent to 50 percent glycol-water solution in intermittent service. The pump shall be provided with a mechanical shaft seal and be flange connected to a 1750 rpm NEMA type C motor. The pump capacity shall be 11 L/m (3 gpm), 345 kPa (50 psig) discharge pressure with a suction lift capability of 127 mm (5 inches) of mercury, with a 2.5 kW (1/3 horsepower) drip-proof motor. The pump may be a "gear-within-a-gear" positive displacement type with built-in relief valve set for 296 kPa (43 psig), or the pump may be a regenerative turbine type providing self-priming with built-in or external relief valve set for design head of the pump.
- 3. Back pressure regulating valve: Spring loaded, diaphragm actuated type with bronze or steel body, stainless steel trim with capacity to relieve 100 percent of pump flow with an allowable rise in the regulated pressure of 69 kPa (10 psig) above the set point. Set point shall be 103 kPa (15 psig) above system PRV setting.
- 4. Low water level control: Steel or plastic float housing, stainless steel or plastic float, positive snap-acting SPST switch mechanism, rated 10 amps-120 volt AC, in General Purpose (NEMA 1) enclosure. The control shall be rated for pressures to 1034 kPa (150 psig) and make alarm circuit on low water level. The alarm circuit shall be wired to an alarm light on the nearest local Temperature Control panel (LTCP). Provide remote output relay to indicate alarm condition at the Building Control System specified under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.5 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
 - 3. Provide piping for the flow assembly piping to the main control panel and accessories.
 - a. The inlet piping shall connect to the discharge side of the circulating water pump.
 - b. The outlet piping shall connect to the water piping serving the cooling tower downstream of the heat source.
 - c. Provide inlet Y-strainer and ball valves to isolate and service main control panel and accessories.
 - 4. Install injection nozzles with corporation stops in the water piping serving the cooling tower downstream of the heat source.
 - 5. Provide piping for corrosion monitor rack per manufacturer's installation instructions. Provide ball valves to isolate and service rack.
 - Provide piping for erosion chemical feeder per manufacturer's installation instructions. Provide ball valves to isolate and service feeder.
 - 7. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

02-01-20

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room,

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- C. Section 08 90 00, LOUVERS and VENTS: Outdoor and Exhaust Louvers.
- D. Section 22 11 00, FACILITY WATER DISTRIBUTION: Plumbing Connections.
 - E. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT.
 - F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
 - G. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise Level Requirements.
 - H. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
 - I. Section 23 07 11, HVAC, and BOILER PLANT INSULATION: Duct Insulation.
 - J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
 - K. Section 23 34 00, HVAC FANS: Return Air and Exhaust Air Fans.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

- L. Section 23 36 00, AIR TERMINAL UNITS: Air Flow Control Valves and Terminal Units.
- M. Section 23 40 00, HVAC AIR CLEANING DEVICES: Air Filters and Filters' Efficiencies.
- N. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Supply Air Fans.
- O. Section 23 82 00, CONVECTION HEATING and COOLING UNITS.
- P. Section 23 82 16, AIR COILS: Duct Mounted Coils.
- Q. Section 28 31 00, FIRE DETECTION and ALARM: Smoke Detectors.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round duct construction details:
 - a. Manufacturer's details for duct fittings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 31 00 - 2

Bancroft Architects + Engineers

02-01-20

- b. Duct liner.
- c. Sealants and gaskets.
- d. Access sections.
- e. Installation instructions.
- 3. Volume dampers, back draft dampers.
- 4. Upper hanger attachments.
- 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
- 6. Sound attenuators, including pressure drop and acoustic performance.
- 7. Flexible ducts and clamps, with manufacturer's installation instructions.
- 8. Flexible connections.
- 9. Instrument test fittings.
- 10 Details and design analysis of alternate or optional duct systems.
- 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11-COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-2017......Minimum Design Loads for Buildings and Other

Structures

C. American Society for Testing and Materials (ASTM):

A167-2009.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

A653-2019..... Standard Specification for Steel Sheet,

Zinc-Coated (Galvanized) or Zinc-Iron Alloy

coated (Galvannealed) by the Hot-Dip process

A1011-2018..... Standard Specification for Steel, Sheet and

Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 31 00 - 3

Bancroft Architects + Engineers 02-01-20 with Improved Formability, and Ultra-High Strength B209-2014..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C1071-2019..... Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material) E84-2014.....Standard Test Method for Surface Burning Characteristics of Building Materials D. National Fire Protection Association (NFPA): 90A-2018.....of Air Conditioning and Ventilating Systems 96-2018..... Control and Fire Protection of Commercial Cooking Operations E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 3rd Edition -/2006.....HVAC Duct Construction Standards, Metal and Flexible 2nd Edition -2012.....HVAC Air Duct Leakage Test Manual 6th Edition -2016.....Fibrous Glass Duct Construction Standards F. Underwriters Laboratories, Inc. (UL): 181-2013......Factory-Made Air Ducts and Air Connectors 555-2006Standard for Fire Dampers 555S-2014.....Standard for Smoke Dampers PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
 - Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.

- Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
- 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory-made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
 - Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Round Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

- 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Contracting Officer's Representative.
- E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- H. Ductwork in excess of 620 cm² (96 square inches) shall be protected unless the duct has one dimension less than 150 mm (6 inches) if it passes through the areas listed below. Refer to the Mission Critical Physical Design Manual for VA Facilities. This applies to the following:
 - 1. Agent cashier spaces
 - 2. Perimeter partitions of caches

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

02-01-20

- 3. Perimeter partitions of computer rooms
- 4. Perimeter of a COOP sites
- 5. Perimeter partitions of Entrances
- 6. Security control centers (SCC)

2.3 DUCT LINER (WHERE INDICATED ON DRAWINGS) (NOT USED)

2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - Each fire damper (for link service), smoke damper and automatic control damper.
 - 2. Each duct mounted smoke detector.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.5 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless-steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

02-01-20

2. Submit manufacturer's installation instructions conforming to UL rating test.

2.6 SMOKE DAMPERS (NOT USED)

2.7 COMBINATION FIRE AND SMOKE DAMPERS (NOT USED)

2.8 FIRE DOORS (NOT USED)

2.9 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

2.10 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.11 SOUND ATTENUATING UNITS (NOT USED)

2.12 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 300 mm (12 inches) above finish roof service, continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in can't strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.13 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.14 SEISMIC RESTRAINT FOR DUCTWORK (NOT USED)

2.15 DUCT MOUNTED THERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7-inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 31 00 - 9

Bancroft Architects + Engineers

2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.16 DUCT MOUNTED TEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.17 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.18 AIR FLOW CONTROL VALVES (AFCV) (NOT USED)

2.19 LEAD COVERED DUCT (NOT USED)

2.20 ELECTROSTATIC SHIELDING (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

⁰²⁻⁰¹⁻²⁰

Bancroft Architects + Engineers

02-01-20

dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Install fire dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Contracting Officer's Representative. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Contracting Officer's Representative.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hours. Support ducts SMACNA Standards.

- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by Contracting Officer's Representative. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

the scope of the testing may be reduced by the Contracting Officer's Representative on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated. /

- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Contracting Officer's Representative and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Contracting Officer's Representive and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Contracting Officer's Representive.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 DUCTWORK EXPOSED TO WIND VELOCITY (NOT USED)

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 31 00 - 13

Bancroft Architects + Engineers

02-01-20

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- I. Section 23 82 16, AIR COILS.
- J. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 34 00 - 1

Bancroft Architects + Engineers

- 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - b. Utility fans and vent sets.
 - 3. Prefabricated roof curbs.
 - 4. Power roof and wall ventilators.
 - 5. Centrifugal ceiling fans.
 - 6. Vane axial fans.
 - 7. Tube-axial fans.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA):

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 34 00 - 2

Bancroft Architects + Engineers 02-01-20 99-2016.....Standards Handbook 210-2016...... Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-2017.....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-2014.....Reverberant Room Method for Sound Testing of Fans C. American Society for Testing and Materials (ASTM): B117-2018.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-2008.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-2017..... Standard Test Methods for Measuring Adhesion by Tape Test G152-2013.....Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-2013..... Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials D. National Fire Protection Association (NFPA): NFPA 96-2018..... Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations E. National Sanitation Foundation (NSF): 37-2017 Air Curtains for Entrance Ways in Food and Food Service Establishments F. Underwriters Laboratories, Inc. (UL): 181-2013......Factory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN)

Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 34 00 - 3

Bancroft Architects + Engineers

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWS1 fans: Arrangement 1, 3, 9 or 10,
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Belts: Oil resistant, non-sparking and non-static.
 - Belt Drives: Factory installed with final alignment belt adjustment made after installation.
 - 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
 - 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

23 34 00 - 4

Bancroft Architects + Engineers

02-01-20 for specifications. Provide protective sheet metal enclosure for fans located outdoors.

- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section 26 29 11, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.
- G. Utility Fans, Vent Sets and Small Capacity Fans: Class 1 design, arc welded housing, spun intake cone. Applicable construction specification, paragraphs A and C, for centrifugal fans shall apply for wheel diameters 300 mm (12 inches) and larger. Requirement for AMCA seal is waived for wheel diameters less than 300 mm (12 inches) and housings may be cast iron.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper. Provide electric motor operated damper where indicated.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- 2.4 POWER WALL VENTILATOR (NOT USED)
- 2.5 PACKAGED HOOD MAKE-UP AIR UNITS (NOT USED)
- 2.6 CENTRIFUGAL CEILING FANS (SMALL CABINET FAN) (NOT USED)
- 2.7 PROPELLER FANS (NOT USED)
- 2.8 VANE AXIAL FANS

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. The requirements for AMCA listing and seal are waived.
- B. Fan Housings: Hot rolled steel, one-piece design, incorporating integral guide vanes, motor mounts, bolted access hatch and end flanges. Provide spun inlet bell and screen for unducted inlet and screen for unducted outlet. Provide welded steel, flanged inlet and outlet cones for ducted connection. Provide mounting legs or suspension brackets as required for support. Guide vanes shall straighten the discharge air pattern to provide linear flow.
- C. Impeller: Heat treated cast aluminum alloy incorporating airfoil blades. Impellers shall be balanced statically and dynamically prior to installation on the shaft and as an integral unit prior to shipment.
- D. Variable Pitch Type: Pitch of all blades shall be continuously and simultaneously adjustable throughout the complete pitch range while the impeller is operating at full speed. Blade pitch adjustment shall be accomplished by a factory furnished, mounted, adjusted and tested pneumatic operator with positive positioner relay. Signal pressure shall be 100 kPa (15 psig) and operating pressure shall be 450 kPa to 550 kPa (65 to 80 psig).
- E. Fan Drive: Direct drive or belt drive as scheduled, arrangement 4, with motor located inside fan housing on discharge side of impeller, NEMA C motor mounting, bearings B-10 with average operating life of 200,000 hours, motor wiring leads and bearing lubrication lines extended to outside of housing. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for motor specifications.

2.9 AIR CURTAIN UNITS (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EOUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

02-01-20

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- D. Section 23 31 00, HVAC DUCTS and CASINGS.
- G. Section 23 82 16, AIR COILS.

1.3 QUALITY ASSURANCE

Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
 - 2. Air flow control valves.
- C. Samples: Provide one typical air terminal unit for approval by the Contracting Officer's Representative. This unit will be returned to the Contractor after all similar units have been shipped and deemed acceptable at the job site.
- D. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- E. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-2017.....Performance Rating of Air Terminals
- C. National Fire Protection Association (NFPA): 90A-2018.....Standard for the Installation of Air

Conditioning and Ventilating Systems

D. Underwriters Laboratories, Inc. (UL): 181-2013.....Standard for Factory-Made Air Ducts and Air Connectors

E. American Society for Testing and Materials (ASTM):

C 665-2006..... Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coils:
 - All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.
 - 3. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

02-01-20

Bancroft Architects + Engineers

- factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.
- E. Terminal Sound Attenuators: See Section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

Bancroft Architects + Engineers

- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.
 - 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
 - 3. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
 - 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet. Octopus connectors and flexible connectors are not permitted in the Surgical Suite.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

23 36 00 - 4

Bancroft Architects + Engineers

02-01-20

- Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

2.3 AIR FLOW CONTROL VALVE (AFCV) (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

02-01-20

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Roof Curbs

B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 08 90 00, LOUVERS and VENTS.
 - C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
 - D. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-2015.....Certification, Rating, and Test Manual 4th Edition
- C. American Society of Civil Engineers (ASCE):

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers 02-01-20 ASCE7-2017.....Minimum Design Loads for Buildings and Other Structures D. American Society for Testing and Materials (ASTM): A167-99 2009.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip B209- 2014..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate E. National Fire Protection Association (NFPA): 90A-2018......Standard for the Installation of Air Conditioning and Ventilating Systems F. Underwriters Laboratories, Inc. (UL): 181-2013......ML Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 GRAVITY INTAKE/EXHAUST VENTILATORS (ROOF MOUNTED)

- A. Aluminum, ASTM B209, louvered, spun, or fabricated using panel sections with roll-formed edges, 13 mm (1/2 inch) mesh aluminum welded wire bird screen, with gravity or motorized dampers where shown, accessible interior, designed for wind velocity specified in Paragraph 3.3.
 - Spun Intake/Exhaust Ventilators: Spun aluminum structural components shall be constructed of minimum 1.3 mm (16 Gauge) marine alloy aluminum, bolted to a rigid aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. The spun aluminum baffle shall have a rolled bead for added strength.
 - 2. Louvered Intake/Exhaust Hoods: Louvered hood constructed from 0.081 Gauge extruded aluminum tiers welded to a minimum 3.3 mm (8 Gauge) aluminum support structure. The aluminum hood shall be constructed of a minimum 0.064 marine alloy aluminum and provided with a layer of anti-condensate coating. The aluminum base shall have continuously welded curb cap corners for maximum leak protection.
 - 3. Low Silhouette Intake/Exhaust Ventilator: The unit shall be of bolted and welded construction utilizing corrosion resistant fasteners. The aluminum hood shall be constructed of minimum 1.60 mm

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

(14 Gauge) marine alloy aluminum, bolted to a minimum 3.25 mm (8 Gauge) aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. Birdscreen constructed of 13 mm (1/2 inch) mesh shall be mounted across the relief opening.

- B. See ventilator schedule on the drawings. Sizes shown on the drawings designate throat size. Area of ventilator perimeter opening shall be not less than the throat area.
- C. Dampers for Gravity Ventilators without Duct Connection: Construct damper of the same material as the ventilator and of the design to completely close opening or remain wide open. Hold damper in closed position by a brass chain and catch. Extend chains 300 mm (12 inches) below and engage catch when damper is closed.
- D. Provide Roof Curb by unit manufacturer. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for additional requirements.

2.2 EQUIPMENT SUPPORTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 AIR OUTLETS AND INLETS

A. Materials:

- 1. Steel or aluminum . Provide manufacturer's standard gasket.
- Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - 2. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.
 - 5. Linear Type: To match supply units.
 - Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.
- E. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

2.4 WIRE MESH GRILLE (NOT USED)

2.5 FILTER RETURN/EXHAUST GRILLE (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 02-01-20

23 37 00 - 4

Bancroft Architects + Engineers

B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Contracting Officer's Representative. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY (NOT USED)

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

Bancroft Architects + Engineers

03-01-20

SECTION 23 40 00

HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media used filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- E. Section 23 37 00 AIR OUTLETS AND INLETS.
- F.Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.
- G Section 23 73 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers 03-01-20 Contracting Officer's Representative, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.

- 2. Government Option: The Government at its option may take one of the filters for each different type submitted and run an independent test to determine if the filter meets the requirements of this specification. When the filter meets the requirements, the Government will pay for the test. When the filter does not meet the specification requirements, the manufacturer will be required to pay for the test and replace the filters with filters that will perform as required by the specifications.
- 3. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to meet the minimum level of efficiency shown in the previously submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing.
- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.C. Comply with UL Standard 900 for flame test.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

03-01-20

D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, UL classification, and file number.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. HEPA filters.
 - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 52.2-2017.....Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, including Appendix J
- C. American Society of Mechanical Engineers (ASME): NQA-1-2017.....Quality Assurance Requirements for Nuclear Facilities Applications
- D. Underwriters Laboratories, Inc. (UL): 900;Revision 15 July 2015 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

03-01-20 Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of additional filters to the Contracting Officer's Representative.

B. The Contracting Officer's Representative will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.

HVAC Filter Types Table 2.2C							
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type			
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway			
11	11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			
13	13-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			
14	14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			

C. HVAC Filter Types

D. HEPA Filters

HEPA Filters Table 2.2D							
Efficiency at 0.3 Micron	Application	Application Initial Rated CFM Construction Resistance (inches w.g.)					
99.97	Final Filter	1.35	1100	Galvanized Frame X- Body			
99.97	Final Filter	1.00	2000	Aluminum Frame V-Bank			

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

- A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.
- B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)	1.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66
Rated Initial Resistance (Inches w.g.)	0.33

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

- A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.
- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

						00 01 1
Rated Initial Resi	stance (inches	w.g.)	0.37	0.	34	0.27
2.5 HIGH EFFICIENCY	PARTICULATE AIR	(HEPA)	FILTERS	STANDARD	CAPAC	ITY (FINAL
FILTER APPLICATION)	- NOT USED					

2.6 HEPA FILTERS HIGH CAPACITY V-BANK HIGH CAPACITY FILTERS (FINAL FILTER APPLICATION) - NOT USED

2.7 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
 - Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
 - 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. Where installed outdoors, the housing shall be weatherproof and suitable for rooftop/outdoor installation. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant star-style knobs and replaceable door hinges. A universal holding frame constructed of 18-gauge galvanized steel, equipped with centering dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of highefficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.

Bancroft Architects + Engineers

03-01-20

- 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.
- Manufacturer shall provide evidence of facility certification to ISO 9001:2015.
- B. Holding Frame System (HVAC Grade):
 - Air filter-holding frames shall be 16-gauge galvanized steel with filter sealing flange, centering dimples, sealing gasket and lances for appropriate air filter fasteners. Sizes shall be noted on drawings or other supporting materials.
 - 2. Construction: Filter holding frame shall be constructed of 16-gauge galvanized steel. The frame shall be assembled from two corner sections and welded to assure a rigid and durable frame assembly. The frame shall include a variety of pre-punched lances for filter fastener attachment. Fastener shall be capable of being installed without the use of tools, nuts or bolts. Lance penetrations shall be upstream of filter flange to assure leak-free integrity. The frame shall include filter-centering dimples on each frame wall to facilitate ease of filter installation and assure filter centering against filter sealing flange. A 3/4" filter-sealing flange shall be flush mitered and a permanently mounted polyurethane foam gasket shall be mounted on the sealing flange to assure filter to frame sealing integrity.
 - Manufacturer shall provide evidence of facility certification to ISO 9001:2015.
 - C. Side-Access Housing (HEPA Grade)
 - Filter housing shall be two-stage filter system consisting of 14gauge galvanized steel enclosure, spring-loaded crank-type sealing assembly for gasket seal type final filters, insulated dual-access doors with gasketing and positive sealing doorknobs. In-line housing depth shall not exceed 25". Sizes shall be as noted on enclosed

drawings or other supporting materials. Contract No. 36C26319D0022 Station Project No. 656-19-039

Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 2. Construction: The housing shall be constructed of 14-gauge galvanized steel with mating flanges to facilitate attachment to other system components. All pressure boundaries shall be of all welded construction. The housing shall be weatherproof and suitable for rooftop/outdoor installation. A prefilter track to accommodate nominal 2" deep prefilters, shall be an integral component of the housing. The housing shall incorporate a spring-loaded crank-type final filter sealing mechanism. The mechanism shall be geared to exert 700 pounds of pressure against each filter. The clamping frame shall have a continuous flat surface seal to compress all four downstream gasketed surfaces of the downstream seal filter. The final filter locking mechanism shall include a 3/4" socket adapter to facilitate opening or closing the mechanism. Insulated dual access doors shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable UV-resistant positive sealing knobs. The access doors shall be both hinged for swing open operation or designed to be completely removable. The housing shall include static pressure ports (1/8" NPT male) to facilitate pressure drop measurements across prefilter, final filter, or combination thereof.
- 3. Performance: Manufacturer shall provide evidence of facility certification to ISO 9001:2015.
- D. Equipment Identification: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATON.

2.8 ACTIVATED CARBON PLEATED PANEL FILTERS - NOT USED

2.9 ACTIVATED CARBON EXTENDED SURFACE, HIGH EFFICIENCY GAS PHASE FILTERS - NOT USED

2.11 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range, Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

```
03-01-20
```

- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.12 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

2.13 FILTER RETURN GRILLES

Refer to Section 23 37 00 AIR OUTLETS AND INLETS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install supports, filters and gages in accordance with manufacturer's instructions.
- B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the Contracting Officer's Representative.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

03-01-20

SECTION 23 64 00 PACKAGED WATER CHILLERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Rotary-Screw or Scroll air-cooled chillers complete with accessories.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS.
- B. Section 01 00 00, GENERAL REQUIREMENTS.
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- G. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 21 13, HYDRONIC PIPING.
- J. Section 23 21 23, HYDRONIC PUMPS.
- K. Section 23 31 00, HVAC DUCTS and CASINGS
- L. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 DEFINITION

- A. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- B. BACNET: Building Automation Control Network Protocol, ASHRAE Standard 135.
- C. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- D. FTT-10: Echelon Transmitter-Free Topology Transceiver.
- E. SCBA: Self-Contained Breathing Apparatus.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, and comply with the following.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

03-01-20

- B. Refer to PART 3 herein after and Section 01 00 00, GENERAL REQUIREMENTS for test performance.
- C. Comply with AHRI requirements for testing and certification of the chillers.
- D. Refer to paragraph, WARRANTY, Section 00 72 00, GENERAL CONDITIONS, except as noted below:
 - 1. Provide a 5-year motor, transmission, and compressor warranty to include materials, parts and labor.
- E. Refer to OSHA 29 CFR 1910.95(a) and (b) for Occupational Noise Exposure Standard
- F. Refer to 42 CFR-Public Health, Part 84, "Approval of Respiratory Protective Devices," Subpart H-"Self-Contained Breathing Apparatus," 1998.
 - G. Refer to ASHRAE Standard 15, Safety Standard for Refrigeration System, for refrigerant vapor detectors and monitor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 370-2015......Sound Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment 495-2005(R2009).....Refrigerant Liquid Receivers 550/590-2018.....Standard for Water Chilling Packages Using the Vapor Compression Cycle 560-2000.....Absorption Water Chilling and Water Heating Packages 575-2017.....Methods for Measuring Machinery Sound within Equipment Space
 C. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): 15-2019.....Safety Standard for Mechanical Refrigeration Systems

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

GDL 3-1996.....Guidelines for Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-

Conditioning Equipment and Systems

- E. American Society of Testing Materials (ASTM):
 - C 534/C534M-2017.....Preformed, Flexible Elastomeric Cellular

Thermal Insulation in Sheet and Tubular Form

C 612-2014.....Mineral-fiber Block and Board Thermal

Insulation

- F. National Electrical Manufacturing Association (NEMA):
 250-2014.....Enclosures for Electrical Equipment (1000 Volts
 - Maximum)
- G. National Fire Protection Association (NFPA): 70-2017.....National Electrical Code
- H. Underwriters Laboratories, Inc. (UL): 1995-2015..... Heating and Cooling Equipment

1.6 SUBMITTALS

- A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data.
 - Centrifugal rotary-screw scroll absorption water chillers, including motor starters, control panels, and vibration isolators, and remote condenser data shall include the following:
 - a. Rated capacity.
 - b. Pressure drop.
 - c. Efficiency at full load and part load WITHOUT applying any tolerance indicated in the AHRI 550/590/Standard.
 - d. Refrigerant
 - e. Fan performance (Air-Cooled Chillers only.)
 - f. Accessories.
 - g. Installation instructions.
 - h. Start up procedures.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- Wiring diagrams, including factor-installed and field-installed wiring.
- j. Sound/Noise data report. Manufacturer shall provide sound ratings. Noise warning labels shall be posted on equipment.
- k. Self-contained breathing apparatus (SCBA).
 - 1. Refrigerant vapor detectors and monitors.
- C. Maintenance and operating manuals for each piece of equipment in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- D. Run test report for all chillers.
- E. Product Certificate: Signed by chiller manufacturer certifying that chillers furnished comply with AHRI requirements. The test report shall include calibrated curves, calibration records, and data sheets for the instrumentation used in factory tests.

PART 2 - PRODUCTS

2.1 // CENTRIFUGAL // ROTARY-SCREW //SCROLL // WATER-COOLED WATER CHILLERS - NOT USED

2.2 ABSORPTION WATER CHILLERS - NOT USED

2.3 ROTARY-SCREW AND SCROLL AIR-COOLED WATER CHILLERS

- A. General: Factory-assembled and-tested rotary-screw or scroll water chillers, complete with evaporator, compressors, motor, starters, integral condenser, and controls mounted on a welded steel base. The chiller unit shall consist of two compressors minimum, but not more than eight, mounted on a single welded steel base. Where compressors are paralleled, not more than two shall be so connected and not less than two independent refrigerant circuits shall be provided. Chiller shall be capable of operating one of the following refrigerants: HCFC-134a or HCFC-410a.
- B. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings. If chillers are required to operate at less than 25 percent of full unit rated capacity, specify provision for hot gas by-pass, to operate the unit stable at any stage of capacity reduction.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

- 03-01-20 B. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings. If chillers are required to operate at less than 25 percent of full unit rated capacity, specify provision for hot gas by-pass, to operate the unit stable at any stage of capacity reduction.
- C. Capacity of a single air-cooled chiller shall not exceed 250 Tons (Standard AHRI Conditions).
- D. Applicable Standard: Chillers shall be rated and certified according to AHRI 550/590, and shall be stamped in compliance with AHRI certification.
- E. Acoustics: Sound pressure levels shall not exceed the following specified levels. The manufacturer shall provide sound treatment if required to comply with the specified maximum levels. Testing shall be in accordance with AHRI requirements.

-				OCTAVE	E BAND				Overall
	63	125	250	500	1000	2000	4000	8000	dB(A)
//									//

- F. Compressor (Rotary-Screw Type): NOT USED
- G. Compressor (Scroll Type): Three dimensional, positive-displacement, hermetically sealed design, with suction and discharge valves, crankcase oil heater and suction strainer. Compressor shall be mounted on vibration isolators. Rotating parts shall be factory balanced. Lubrication system shall consist of reversible, positive displacement pump, strainer, oil level sight glass, and oil charging valve. Capacity control shall be by on-off compressor cycling of single and multiple compressors and hot gas bypass.
- H. Refrigerants Circuit: Each circuit shall contain include an expansion valve, refrigerant charging connections, hot-gas muffler, compressor suction and discharge shutoff valves, replaceable-core filter drier,

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

\$03-01-20\$ sight glass with moisture indicator, liquid-line solenoid value and insulated suction line.

- I. Refrigerant and Oil: Sufficient volume of dehydrated refrigerant and lubricating oil shall be provided to permit maximum unit capacity operation before and during tests. Replace refrigerant charge lost during the warranty period, due to equipment failure, without cost to the Government.
- J. Condenser:
 - Air-cooled integral condenser as shown on the drawings and specified hereinafter.
 - 2. Integral Condenser: Condenser coils shall be extended surface fin and tube type, seamless copper tubes with aluminum fins. For corrosion protection, see Paragraph 2.7 below. Condenser coils shall be factory air tested at 3105 kPa (450 psig). Condenser fans shall be propeller type, directly connected to motor shaft. Fans shall be statically and dynamically balanced, with wire safety guards. Condenser fan motors with permanently lubricated ball bearings and three-phase thermal overload protection. Unit shall start -18°C (0°F) with external damper assemblies. Units shall have grilles factory mounted to prevent damage to coil surfaces.
 - 3. Remote Condenser: Refer to paragraph 2.5
- K. Evaporator: Brazed plate and frame type heat exchanger design. Brazed plate evaporator shall be constructed of stainless steel with copper brazing material. The evaporator shall be designed for a minimum of 1.5 times the working pressure produced by the water system, but not less than 10,350 kPa (150 psig). Refrigerant side working pressure shall comply with ASHRAE Standard 15. Evaporator for packaged air-cooled chiller units designed for outdoor installation shall be protected against freeze-up in ambient temperature down to -30 degrees C (-20 degrees F) by a resistance heater cable under insulation with thermostat set to operate below 3 degrees C (37 degrees F) ambient. If electric resistance heater is required and the chiller is connected to emergency power, provide emergency power to the heater cable.
- L. Insulation: Evaporator, suction piping, compressor, and all other parts subject to condensation shall be insulated with 20 mm (0.75 inch)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

\$03-01-20\$ minimum thickness of flexible-elastomeric thermal insulation, complying with ASTM C534.

- M. Refrigerant Receiver: Provide a liquid receiver for chiller units when system refrigerant charge exceeds 80 percent of condenser refrigerant volume. Liquid receivers shall be horizontal-type, designed, fitted, and rated in conformance with AHRI 495. Receiver shall be constructed and tested in conformance with Section VIII D1 of the ASME Boiler and Pressure Vessel Code. Each receiver shall have a storage capacity not less than 20 percent in excess of that required for fully charged system. Each receiver shall be equipped with inlet, outlet drop pipes, drain plug, purging valve, and relief devices as required by ASHRAE Standard 15.
- N. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls in NEMA 1 NEMA 12 NEMA 3R NEMA 4 enclosure, hinged and lockable, factory wired with a single point power connection and separate control circuit. The control panel provide chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad.
 - 1. Following shall display as a minimum on the panel:
 - a. Date and time.
 - b. Outdoor air temperature.
 - c. Operating and alarm status.
 - d. Entering and leaving water temperature-chilled water.
 - e. Operating set points-temperature and pressure.
 - f. Refrigerant temperature and pressure.
 - g. Operating hours.
 - h. Number of starts.
 - i. Current limit set point.
 - j. Maximum motor amperage (percent).
 - 2. Control Functions:
 - a. Manual or automatic startup and shutdown time schedule.
 - b. Condenser water temperature.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- c. Entering and leaving chilled water temperature and control set points.
- d. Automatic lead-lag switch.
- 3. Safety Functions: Following conditions shall shut down the chiller and require manual reset to start:
 - a. Loss of chilled water flow.
 - b. Loss of condenser water flow (for water-cooled chillers only).
 - c. Low chilled water temperature.
 - d. Compressor motor current-overload protection.
 - e. Freeze protection (for air-cooled chillers).
 - f. Starter fault.
 - g. High or low oil pressure.
 - h. Recycling pumpdown.
- O. The chiller control panel shall provide leaving chilled water temperature reset based on return water temperature outdoor air temperature 4-20 ma or 0-10 VDC signal from Energy Control Center (ECC).
- P. Provide contacts for remote start/stop, alarm for abnormal operation or shutdown, and for Engineering Control Center (ECC).
- Q. Chiller control panel shall either reside on the "LonTalk FTT-10a network", and provide data using LonMark standard network variable types and configuration properties, or BACnet interworking using ARCNET or MS/TP physical data link layer protocol for communication with building automation control system.
- R. Auxiliary hydronic system and the chiller(s) shall be interlocked to provide time delay and start sequencing as indicated on control drawings.
- S. Motor: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Compressor motor furnished with the chiller shall be in accordance with the chiller manufacturer and the electrical specification Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT. Starting torque of motors shall be suitable for driven machines.
- T. Motor Starter: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Provide a starter in NEMA I enclosure, designed

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

03-01-20 for floor or unit mounted chiller using multiple compressors, with the lead compressor starting at its minimum capacity may be provided with across-the-line starter. See Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for additional requirements.

2.4 CONDENSING UNITS FOR AIR CONDITIONING SERVICE - NOT USED

2.5 CONDENSERS - NOT USED

2.6 REFRIGERANT MONITORING AND SAFETY EQUIPMENT

- A. General: Provide refrigerant monitoring sensor/alarm system and safety equipment as specified here. Refrigerant sensor and alarm system shall comply with ASHRAE Standard 15. The refrigerant monitoring system will be provided by the chiller manufacturer and shall be interfaced with the DDC control system.
- B. Refrigerant monitor shall continuously display the specific gas (refrigerant used) concentration; shall be capable of indicating, alarming and shutting down equipment; and automatically activating ventilation system. On leak detection by refrigerant sensor(s), the following shall occur:
 - 1. Activate machinery (chiller) room ventilation.
 - 2. Activate visual and audio alarm inside and outside of machinery room, with beacon light(s) and horn sounds equipment room and outside equipment room door(s). Shut down combustion process where combustion equipment is employed in the machinery room.
 - 3. Notify Engineering Control Center (ECC) of the alarm condition.
- C. Refrigerant monitor shall be capable of detecting concentration of 1 part per million (ppm) for low-level detection and for insuring the safety of operators. It shall be supplied factory-calibrated for the apparent refrigerant.
- D. Monitor design and construction shall be compatible with temperature, humidity, barometric pressure, and voltage fluctuations of the machinery room operating environment.
- E. Self-Contained Breathing Apparatus (SCBA):
 - 1. Self-contained breathing apparatus shall comply with 42 CFR 84.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

```
03-01-20
```

- 2. Orthopedically designed for shoulder mounting, portable, and compressed-air type, completely assembled with face-piece and harness carrier assembly.
- 3. Face-piece to be constructed of durable material, complete with adjustable straps to hold face piece to head, close fitting nose piece to ensure no CO2 build-up, and perspiration drain to avoid skin irritation and to prevent eyepiece, spectacle, and lens fogging.
- 4. Air cylinder shall be fitted with quick refill assembly and air transfer.
- 5. Minimum SCBA gear rating shall be 30 45 minutes duration.
- 6. SCBA shall be housed in leak-proof, corrosion-resistant, tough plastic case for wall mounting. Minimum two (2) SCBA shall be provided.

2.7 CORROSION PROTECTION

- A. Remote Outdoor Condenser Coils: Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverseosmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UVresistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty. The coating process shall be such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - 1. Salt Spray Resistance (Minimum 6,000 Hours)
 - 2. Humidity Resistance (Minimum 1,000 Hours)
 - 3. Water Immersion (Minimum 260 Hours)
 - 4. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
 - 5. Impact Resistance (Up to 160 Inch/Pound)
- B. Exposed Outdoor Cabinet: Casing Surfaces (Exterior and Interior): All

exposed and accessible metal surfaces shall be protected with a water-Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

03-01-20 reducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) AND 500 hours UV resistance (ASTM D4587)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping and electrical to verify actual locations and sizes before chiller installation and other conditions that might affect chiller performance, maintenance, and operation. Equipment locations shown on drawings are approximate. Determine exact locations before proceeding with installation.

3.2 EQUIPMENT INSTALLATION

- A. Install chiller on concrete base with isolation pads or vibration isolators.
 - Concrete base is specified in Section 03 30 00, CAST-IN-PLACE CONCRETE
 - Vibration isolator types and installation requirements are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
 - Anchor chiller to concrete base according to manufacturer's written instructions.
 - 4. Charge the chiller with refrigerant, if not factory charged.
 - 5. Install accessories and any other equipment furnished loose by the manufacturer, including remote starter, remote control panel, and remote flow switches, according to the manufacturer written instructions and electrical requirements.
 - 6. Chillers shall be installed in a manner as to provide easy access for tube pull and removal of compressor and motors etc.
- B. Install refrigerant monitoring and safety equipment in accordance with ASHRAE Standard 15.
- C. Install refrigerant piping as specified in Section 23 23 00, REFRIGERANT PIPING and ASHRAE Standard 15.
- D. Install thermometers and gages as recommended by the manufacturer and/or as shown on drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

03-01-20

- E. Piping Connections:
 - 1. Make piping connections to the chiller for chilled water, condenser water, and automatic tube brush cleaning system and other connections as necessary for proper operation and maintenance of the equipment.
 - 2. Make equipment connections with flanges and couplings for easy removal and replacement of equipment from the equipment room.
 - 3. Extend vent piping from the relief valve rupture disk and purge system to the outside.

3.3 STARTUP AND TESTING

- A. Engage manufacturer's factory-trained representative to perform startup and testing service.
- B. Inspect, equipment installation, including field-assembled components, and piping and electrical connections.
- C. After complete installation startup checks, according to the manufacturers written instructions, do the following to demonstrate to the COR that the equipment operate and perform as intended.
 - 1. Check refrigerant charge is sufficient and chiller has been tested for refrigerant leak.
 - 2. Check bearing lubrication and oil levels.
 - 3. Verify proper motor rotation.
 - 4. Verify pumps associated with chillers are installed and operational.
 - 5. Verify thermometers and gages are installed.
 - 6. Verify purge system, if installed, is functional and relief piping is routed outdoor.
 - 7. Operate chiller for run-in-period in accordance with the manufacturer's instruction and observe its performance.
 - 8. Check and record refrigerant pressure, water flow, water temperature, and power consumption of the chiller.
 - 9. Test and adjust all controls and safeties. Replace or correct all malfunctioning controls, safeties and equipment as soon as possible to avoid any delay in the use of the equipment.
 - 10. Prepare a written report outlining the results of tests and inspections, and submit it to the COR.
- D. Engage manufacturer's certified factory trained representative to provide training for 16 hours for the VA maintenance and operational Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

03-01-20 personnel to adjust, operate and maintain equipment, including selfcontained breathing apparatus.

- E. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.
- F. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of computer room air conditioning equipment.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units. Coordinate this training with that of the cooling tower, if furnished together.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

Bancroft Architects + Engineers

03-01-20

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

03-01-20

SECTION 23 73 00 INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of housed-centrifugal fan with V-belt drive, single or multiple plenum fans with direct-drive, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES,
- C.Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 09 91 00, PAINTING.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- G. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- H. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- I. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- J. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- K. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Section 23 21 13, HYDRONIC PIPING.
- M. Section 23 31 00, HVAC DUCTS and CASINGS.
- N. Section 23 34 00, HVAC FANS.
- O. Section 23 40 00, HVAC AIR CLEANING DEVICES.
- P. Section 23 82 16, AIR COILS.
- Q. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- B. Air Handling Units Certification
 - Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4. SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 1. Submittals for AHUS shall include fans, drives, motors, coils, humidifiers, mixing box with outside/return air dampers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).
- 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).
- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

- D. Submit written test procedures two weeks prior to factory testing.Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
 - 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
 - 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-2001.....Standard for Forced-Circulation Air-Heating and Air-Cooling Coils

430-2014.....Central Station Air Handling Units

C. Air Movement and Control Association International, Inc. (AMCA): 210-2016.....Laboratory Methods of Testing Fans for Rating

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

- 03-01-20 C. Air Movement and Control Association International, Inc. (AMCA): 210-2016..... Fans for Rating Methods of Testing Fans for Rating D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 170-2017.....Ventilation of Health Care Facilities E. American Society for Testing and Materials (ASTM): B117-2017..... Standard Practice for Operating Salt Spray (Fog) Apparatus D1654-2016.....Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments D1735-2014.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-2017..... Standard Test Methods for Measuring Adhesion by Tape Test F. Military Specifications (Mil. Spec.): P-21035B-2003.....Paint, High Zinc Dust Content, Galvanizing Repair (Metric) G. National Fire Protection Association (NFPA): 90A-2018.....of Air Conditioning and Ventilating Systems, 2009
- H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS

- A. General:
 - 1. AHUS shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing shall be fabricated as specified in section 2.1.C.2. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units, subject to VA approval, may be used in place of galvanized steel. The unit manufacturer shall provide published documentation confirming that the structural rigidity of aluminum air-handling units is equal or greater than the specified galvanized steel.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- 2. The contractor and the AHU manufacturer shall be responsible for ensuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
- 3. AHUS shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested, and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
- 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a factory-trained and qualified local representative at the job site to supervise the assembly and to assure that the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation to the Contracting Officer that the local representative has provided services of similar magnitude and complexity on jobs of comparable size. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are

not disassembled. Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8 inch WG) or higher.
- B. Base:
 - 1. Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and steam coil condensate return trap as shown on drawings.
 - AHUs shall be completely self supporting for installation on concrete housekeeping pad, steel support pedestals, or suspended as shown on drawings.
 - 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - 1. General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.
 - 2. Casing Construction:

Outer Panel	0.8 mm (22 Gage) Minimum				
Inner Panel	0.8 mm (22 Gage) Minimum				
Insulation	Foam				
Thickness	50 mm (2 inch) Minimum				
Density	48 kg/m ³ (3.0 lb/ft ³) Minimum				
Total R Value	2.3 m ² .K/W (13.0 ft ² .°F.hr/Btu)				

Table 2.1.C.2

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

Minimum

03-01-20

3. Casing Construction (Contractor's Option):

Table 2.1.C.3

Outer Panel	1.3 mm (18 Gage) Minimum				
Inner Panel	1.0 mm (20 Gage) Minimum				
Insulation	Fiberglass				
Thickness	50 mm (2 inch) Minimum				
Density	24 kg/m ³ (1.5 lb/ft ³) Minimum				
Total R Value	1.4 m ² .K/W (8.0 ft ² . ^o F.hr/Btu)				
	Minimum				

- 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 6. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, humidifier coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers 03-01-20 rigid with minimum 45 kg (100 lb) weight hung on latch side of door.

- b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG).
- c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 7. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.

D. Floor:

- 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- Where indicated, furnish and install floor drains, flush with the floor, with nonferrous grate cover and stub through floor for external connection.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
 - 2. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
 - Installation, including frame, shall be designed and sealed to prevent blow-by.
- F. Housed Centrifugal Fan Sections:
 - 1. Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined or forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B (10) life of not less than 50,000 hours and an L (50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
 - 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers 03-01-20 AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements.

- 3. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- H. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - 1. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION, on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- I. Plenum Fans Single and/or Multiple Fans in an Array:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 1. General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.
- 2. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
- 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.
- 5. Fan Accessories
 - a. Fan Isolation: Provide an automatic back draft damper to isolate the fan not in operation due to failure.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

23 73 00 - 12

Bancroft Architects + Engineers

- b. Fan Airflow Measurement: Provide an airflow measuring device integral to the fan to measure air volume within +/- 5 percent accuracy. The probing device shall not be placed in the airflow path to stay clear of turbulence and avoid loss of performance.
- J. Fan Motor, Drive, and Mounting Assembly (Plenum Fans): Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT, on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS
- L. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 CFM per square foot) at 250 Pa (1 inch WG) and 9 CFM per square foot at 995 Pa (4 inch WG) Electronic operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - N. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

23 73 00 - 13

Bancroft Architects + Engineers 03-01-20 furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.

- 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- P. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections.
 - 1. Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty.
 - 2. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - a. Salt Spray Resistance (Minimum 6,000 Hours)
 - b. Humidity Resistance (Minimum 1,000 Hours)
 - c. Water Immersion (Minimum 260 Hours)
 - d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 73 00 - 14

06/02/2023

Bancroft Architects + Engineers

e. Impact Resistance (Up to 160 Inch/Pound)

- 3. Water Coils, Including Glycol-Water.
- Q. Humidifier: When included in design, coordinate the humidification requirements with section 23 22 13 Steam and Condensate Heating Piping. Provide air-handling unit-mounted humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware.
- S. Discharge Section:

Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.

- T. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, humidifier and any section over 300 mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.
 - 3. Provide a convenience duplex receptacle next to the light switch.
 - 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air handling unit in conformance with ARI 435.
- B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 03-01-20

23 73 00 - 15

Bancroft Architects + Engineers

- D. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- E. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

03-01-20

SECTION 23 74 13 PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof top air handling units including integral components specified herein.
- B. Definitions: Roof Top Air Handling Unit (Roof Top Units, RTU): A factory fabricated assembly consisting of fan, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. NOT USED
 - D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
 - F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
 - H. Section 23 07 11, HVAC and BOILER PLANT INSULATION.
 - I. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
 - J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - K. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.
 - L. Section 23 31 00, HVAC DUCTS and CASINGS.
 - M. Section 23 34 00, HVAC FANS.
 - N. Section 23 40 00, HVAC AIR CLEANING DEVICES.
 - O. Section 23 82 16, AIR COILS.
 - P. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Air Handling Units Certification
 - 1. Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 410, AHRI 430, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4 SUBMITTALS:

A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish a complete submission for all roof top units covered in the project. The submission shall include Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 74 13 - 2

06/02/2023

03-01-20

Bancroft Architects + Engineers

03-01-20 all information listed below. Partial and incomplete submissions shall be rejected without reviews.

- B. Manufacturer's Literature and Data:
 - 1. Submittals for RTUs shall include fans, drives, motors, coils, humidifiers,, mixing box with outside/return air dampers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc) and rigging points.
 - 2. Submittal drawings of section or component only, will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details; if the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
 - 3. Submit sound power levels in each octave band for fan and at entrance and discharge of RTUs at scheduled conditions. Include sound attenuator capacities and itemized internal component attenuation. Internal lining of supply air ductwork with sound absorbing material is not permitted. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
 - 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute) and 110 percent of design static pressure.
- 5. Submit total fan static pressure, external static pressure, for RTU including total, inlet and discharge pressures, and itemized Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

03-01-20 specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.

- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.Submit written results of factory tests for approval prior to shipping.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- F. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
 - 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
 - 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI): 260-2017.....Sound Rating of Ducted Air Moving and Conditioning Equipment
 - 410-2001..........Standard for Forced-Circulation Air-Heating and Air-Cooling Coils

430-2014.....Standard for Central Station Air Handling Units DCAACP2008.....Directory of Certified Applied Air Conditioning Products

C. Air Moving and Conditioning Association (AMCA):

210-2016..... Laboratory Methods of Testing Fans for Rating

- D. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA): 9-2015.....Load Ratings and Fatigue life for Ball Bearings
- E. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE):

51-2016......Laboratory Methods of Testing Fans for Rating F. American Society for Testing and Materials (ASTM):

- A653/653M-2019.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
 - Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

B117-2018.....Salt Spray (Fog) Testing

C1071-2019..... Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)

- D1654-2016.....Standard Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
- D1735-2014.....Water Resistance of Coatings Using Water Fog Apparatus
- D3359-2017.....Standard Test Methods for Measuring Adhesion by Tape Test

E84-2014.....Standard Test Method for Surface Burning Characteristics of Building Materials

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 74 13 - 5

03-01-20

Bancroft Architects + Engineers

G. Military Specifications (Mil. Spec.): DOD-P-21035A-2014.....Paint, High Zinc Dust Content, Galvanizing

Repair

- H. National Fire Protection Association (NFPA): 90A-2018.....Standard for Installation of Air Conditioning and Ventilating Systems, 2009
- I. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 ROOF TOP AIR HANDLING UNITS

- A. General:
 - 1. Roof top units (RTU) shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in drawthrough configuration. Casing is specified in paragraph 2.1.C. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified.
 - 2. The contractor and the RTU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
 - 3. RTUs shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

03-01-20 and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.

- 4. The RTU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a local representative at the job site to supervise the assembly and to assure the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation that this representative has provided this service on similar jobs to the Contracting Officer. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 Pa (8 inches water gage) or higher.
- 7. Corrosion Protection:
 - a. Coil Treatment: Epoxy Immersion Coating-Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty. The

coating process shall such that uniform coating thickness is Contract No. 36C26319D0022 Station Project No. 656-19-039

Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

03-01-20 maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:

- 1) Salt Spray Resistance (Minimum 6,000 Hours)
- 2) Humidity Resistance (Minimum 1,000 Hours)
- 3) Water Immersion (Minimum 260 Hours)
- 4) Cross-Hatch Adhesion (Minimum 4B-5B Rating)
- 5) Impact Resistance (Up to 160 Inch/Pound)
- b. Casing Surfaces (Exterior and Interior): All exposed and accessible exterior and interior metal surfaces shall be protected with a water-reducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) and 500 hours UV resistance (ASTM D4587).
- B. Base:
 - 1. Provide a heavy duty steel base for supporting all major RTU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and steam coil condensate return trap as shown on drawings.
 - 2. RTUs shall be completely self supporting for installation on roof curb or steel support pedestals.
 - 3. The RTU bases not constructed of galvanized material shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - 1. General: RTU casing shall be entirely double wall insulated panels, integral of or attached to a structural frame. Construction shall be such that removal of any panel shall not affect the structural integrity of the unit. Casing finished shall meet salt-spray test as specified in paragraph 2.1.C.10. All casing and panel sections shall

be tightly butted and gasketed. No gaps of double wall construction Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 74 13 - 8

06/02/2023

Bancroft Architects + Engineers

03-01-20 will be allowed where panels bolt to air handling unit structural member. Structural members, not covered by the double wall panels, shall have equivalent insulated double wall construction.

- 2. Double wall galvanized steel panels, minimum 51 mm (2 inches) thick, constructed of minimum 1.3 mm (18 gauge) outer skin and 1.0 mm (20 gauge)solid or perforated inner skin. to limit wall, roof and floor deflection to not exceed an L/240 ratio when the unit casing is pressurized to (±1245 Pa (±5 in. w.g.). Deflection shall be measured at the midpoint of the panel height. Total housing leakage shall not exceed 1% of rated cfm when the unit casing is pressurized to ±5 in. w.g. (±1245 Pa). The outer (skin) and inner panels shall be solid.
- 3. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 4. Insulation: Insulation shall be injected CFC free polyurethane foam encased in double-wall casing between exterior and interior panels such that no insulation can erode to the air stream. Insulation shall be 50 mm (2 inch) thick, and 48 kg/m³ (3.0 lb/ft³) density with a total thermal resistance (R-value) of approximately 2.3 m.K/W (13.0 hr-ft² °F/BTU). Units with less than 50 mm (2 inch) of insulation in any part of the walls, floor, roof or drain pan shall not be acceptable. The insulation shall comply with NFPA 90-A for the flame and smoke generation requirements. Also, refer to specification Section 23 07 11, HVAC and BOILER PLANT INSULATION.

Outer Panel	0.8 mm (22 Gage) Minimum							
Inner Panel	0.8 mm (22 Gage) Minimum							
Insulation	Foam							
Thickness	50 mm (2 inch) Minimum							
Density	48 kg/m ³ (3.0 lb/ft ³) Minimum							
Total R Value	2.3 m ² .K/W (13.0 ft ² .°F.hr/Btu)							
	Minimum							

Table 2.1.C.4

Bancroft Architects + Engineers

- 5. The thickness of insulation, mode of application, and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU.
- 6. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 7. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inches) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, humidifier coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 pound) weight hung on latch side of door.
 - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inches water gage).
 - c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

- 8. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
- 9. Roof of the unit shall be sloped to have a minimum pitch of 1/4 inch per foot. The roof shall overhang the side panels by a minimum of three inches to prevent precipitation drainage from streaming down the unit side panels.
- 10. Casing finished shall meet ASTM B117, 500-hour salt spray test, using 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no sign of blistering, wrinkling, or cracking, no loss of adhesion, and the specimen shall show no sign of rust creepage beyond 1/8-inch on either side of scratch mark.
- D. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 pounds per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double wall construction, Type 304 stainless steel and have a minimum of 50 mm (2 inch) insulation, and shall be sloped to drain. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints

exposed to water will be permitted. Drain pan shall be placed on top of Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

23 74 13 - 11

03-01-20

Bancroft Architects + Engineers

03-01-20 casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.

- 1. An intermediate condensate drip pan shall be provided on stacked cooling coils and shall be constructed of type 304 stainless steel with copper downspouts factory piped to main condensate pan. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
- Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
- Installation, including frame, shall be designed and sealed to prevent blow-by.
- F. Housed Centrifugal Fan Sections:
 - 1. Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined or forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B(10) life of not less than 40,000 hours and an L(50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
 - 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement

shall be demonstrated with field test in accordance with Section 23 Contract No. 36C26319D0022 Station Project No. 656-19-039

Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

03-01-20 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).

- G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - 1. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT, on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- H. Plenum Fans Single and/or Multiple Fans in an Array
 - 1. General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.
 - 2. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial

directions. After field installation, compliance to this requirement Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 06/02/2023

Bancroft Architects + Engineers

03-01-20 shall be demonstrated with field test in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC. The fan wheel shall meet or exceed guidelines in AMCA 801-92 for dynamic balancing requirements. The complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).

- 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
- 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.
- 5. Fan Accessories
 - a. Fan Isolation: Provide an automatic back draft damper to isolate the fan not in operation due to failure.
 - b. Fan Airflow Measurement: Provide an airflow measuring device integral to the fan to measure air volume within +/-5 percent accuracy. The probing device shall not be placed in the airflow path to stay clear of turbulence and avoid loss of performance.
- 6. Fan Motor, Drive and Mounting Assembly: Fan Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMNT, on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS
- I. Multi-zone damper blades shall be galvanized steel or aluminum type. Dampers shall have metal compressible jamb seals and extruded vinyl or Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

metal blade edge seals. Dampers shall rotate on stainless steel bearings or bronze bushings. Leakage rate shall not exceed 2.5 cubic meters/minute/square meter (8 cfm per sq. foot) at 250 Pa (1 inch water). Dampers and operators shall be furnished and factory installed by RTU manufacturer. Damper operators shall be of the same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

- J. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 cfm per square foot) at 250 Pa (1 inch water gage) and 2.8 cubic meters/min/square meter (9 cfm per square foot) at 995 Pa (4 inches water gage) Electronic damper operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- K. Blenders: Construction of the blender section shall be of welded aluminum 2 mm (0.081 inch) thick framing and turbulators. The mixer shall have no moving parts and shall contain a primary set of directional changing vanes, a secondary set of turbulator vanes, and a cone design for mixing of air streams. Certify blender performance to achieve no more than a 5°F variation across the cross section of the AHU measured 12 inches downstream of the blender over a face velocity range of 1-4 m/s (200-800 FPM).
 - L. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - Filters including one complete set for temporary use at site shall be provided independent of the RTU. The RTU manufacturer shall install filter housings and racks in filter section compatible with

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

03-01-20

Bancroft Architects + Engineers

03-01-20 filters furnished. The RTU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for RTU testing.

- 2. Factory-fabricated filter section shall be of the same construction and finish as the RTU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- M. Diffuser Section: Furnish a diffuser segment with perforated diffuser plate immediately downstream of supply fan to assure uniform distribution of leaving air across the face of the downstream afterfilters to create uniform velocity profiles across the entire opening. Bolt or weld diffuser plate to a sturdy steel support frame so that it remains rigid. Manufacturer shall include any diffuser section pressure loss in excess of diffuser plate and this value shall be included in unspecified internal losses when selecting fan.
- N. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Refer to Drawings and Section 23 82 16, AIR COILS, for additional coil requirements. 1. Water Coils, Including Glycol-Water.
- O. Humidifier: When included in design, coordinate the humidification requirements with section 23 84 13 Humidifiers. Provide humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware.
- P. Sound Attenuators: Refer to Drawings, Specification Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT, and Section 23 31 00, HVAC DUCTS AND CASINGS, for additional unit mounted sound

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

03-01-20 attenuator requirements. RTU sound attenuators shall be factory installed as an integral part of RTU.

- Q. Discharge Section: Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- R. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, humidifier and any section over 300mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.
 - 3. Provide a convenience duplex weatherproof receptacle next to the light switch.
 - 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof top unit in conformance with ARI 435.
- B. Assemble roof top unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035A. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air-handling units clean prior to operation.
- C. Leakage and test requirements for roof top units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

```
03-01-20
```

- D. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Seal and/or fill all openings between the casing and RTU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

03-01-20

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies convectors.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 09 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- H. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- J. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- K. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors.
- L. Section 23 82 16, AIR COILS: Additional coil requirements.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide guarantee in accordance with FAR clause 52.246-21

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Convectors.

Bancroft Architects + Engineers

03-01-20

- C. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with Article, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI):

440-2019..... Performance Rating of Room Fan Coils

445-2013..... Standard for Air-Induction Units

National Fire Protection Association (NFPA):

90A-2018..... of Air

Conditioning and Ventilating Systems

70-2017.....National Electrical Code

C. Underwriters Laboratories, Inc. (UL):

181-2013.....Standard for Factory-Made Air Ducts and Air Connectors

1995-2015..... Heating and Cooling Equipment

PART 2 - PRODUCTS

- 2.1 INDUCTION UNITS NOT USED
- 2.2 ROOM FAN-COIL UNITS NOT USED
- 2.3 UNIT HEATERS NOT USED
- 2.4 CABINET UNIT HEATERS NOT USED

2.6 CONVECTORS

- A. Ratings: In accordance with AHRI 445.
- B. Enclosure: Steel panels, minimum 1.3 mm (18 gage) front and 1.0 mm (20 gage) back and sides. Provide baked enamel finish in standard

Bancroft Architects + Engineers

manufacturer's colors as selected by the Architect. Provide easy access to heating elements, valves and controls.

- Fully recessed units: Flanged enclosure with 13 mm (l/2-inch) thick fiber-glass insulation on the back. Provide one-piece front panel with integral inlet and outlet grilles.
- 2. Wall hung and freestanding units: Sloping top design.
- C. Hydronic/Steam Heating Elements: Copper tubing expanded into cast iron or cast brass headers and aluminum fins with integral collars bonded by mechanical expansion of tubing. Elements shall withstand 690 kPa (100 psig) air pressure when factory tested under water.
- D. Electric Heating Elements (Wall Hung and Freestanding Units):
 - Cal-rod electric resistance type inside aluminum tubes, mechanically expanded into fins and suspended between junction boxes. Provide capillary type automatic reset thermal cutout for immediate overheat protection. Front panel temperature shall not exceed 54 degrees C (130 degrees F). Units shall be UL approved.
 - Unit mounted temperature control: Two stage (low/high/off) line or low voltage thermostat with control relays.
- E. Provide field installed remote wall mounted line or low voltage electric space thermostats.

2.7 FINNED-TUBE RADIATION UNITS - NOT USED

2.8 RADIANT CEILING PANELS - NOT USED

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they always remain stationary. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Install fiberglass blanket insulation with a minimum R value of 8 above hydronic radiant panels.

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 03-01-20

23 82 00 - 3

Bancroft Architects + Engineers

03-01-20

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

Bancroft Architects + Engineers

03-01-20

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

Heating and cooling coils for air handling unit and duct applications

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 23 05 xx,
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS
- F. Section 23 09 23, DDC SYSTEMS for HVAC
- G. Section 23 31 00, HVAC DUCTS AND CASINGS
- H. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
- I. Section 23 72 00, AIR TO AIR ENERGY RECOVERY EQUIPMENT
- J. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- K. Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS
- L. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.

Bancroft Architects + Engineers

- E. Coils may be submitted with Section 23 36 00, AIR TERMINAL UNITS, Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS, Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS, or Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-2001.....Forced-Circulation Air-Cooling and Air-Heating Coils
- C. American Society for Testing and Materials (ASTM): B75/75M-2019.....Standard Specifications for Seamless Copper Tube
- D. National Fire Protection Association (NFPA): 70-2017.....National Electric Code
- E. National Electric Manufacturers Association (NEMA): 250-2014.....Enclosures for Electrical Equipment (1,000 Volts Maximum)
- F. Underwriters Laboratories, Inc. (UL):
 1996-2014.....Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

- A. Conform to ASTM B75 and AHRI 410.
- B. Surgical Suites All Locations: All coils installed in the air handling units serving surgical suites, duct-mounted reheat coils, and air terminal unit-mounted reheat coils shall be equipped with copper fins.
- C. High Humidity Locations: For air-handling unit mounted coils provide the following corrosion treatment:

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 03-01-20

Bancroft Architects + Engineers

- 1. Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty.
- 2. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - a. Salt Spray Resistance (Minimum 6,000 Hours)
 - b. Humidity Resistance (Minimum 1,000 Hours)
 - c. Water Immersion (Minimum 260 Hours)
 - d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
 - e. Impact Resistance (Up to 160 Inch/Pound)
- D. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- E. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- F. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- G. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- H. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
- I. Pressures kPa (PSIG):

Contract No. 36C26319D0022 Station Project No. 656-19-039 Bancroft-AE Project No. 18-116 03-01-20

Bancroft Architects + Engineers

03-01-20

	Pressure		Water Coil			Steam Coil			Refrigerant Coil			
	Test	2	070	(300)	17	25 ((250)		2070	(300)		
М	lorking	1	380	(200)	5	20 ((75)		1725	(250)		

- J. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
- K. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
- L. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS or Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS.
- M. Steam Distributing Coils: Conform to ASTM B75 and ARI 410. Minimum 9.5 mm (3/8-inch) steam distributing tubing installed concentrically in 25 mm (one-inch) OD condensing coil tubes.
- N. Integral Face and Bypass Type Steam Coil:
 - 1. Exempt from ARI Test and Certification.
 - 2. Conform to ASTM B75 and ARI 410.
 - 3. Minimum 16 mm (5/8-inch) steam tube installed in concentrically 25 mm (one-inch) OD diameter tube.
 - 4. Casing: 1.9 mm (14 gage) galvanized steel with corrosion resistant paint.
 - 5. Tubes and Bypasses: Vertical or horizontal.
- O. Dampers: Interlocking opposed blades to completely isolate coil from air flow when unit is in bypass position; 1.6 mm (16 gage) steel, coated with factory applied corrosion resistant baked enamel finish. Provide damper linkage and electric operators. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.2 REHEAT COILS, DUCT MOUNTED

The coils shall be continuous circuit booster type for steam or hot water as shown on drawings. Use the same coil material as listed in Article 2.1.

Bancroft Architects + Engineers

03-01-20

2.3 WATER COILS, INCLUDING GLYCOL-WATER

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:
 - 1. Cooling, all types.
 - 2. Heating or preheat.
 - Runaround energy recovery. ARI certification of capacity adjustment is waived. See Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.
- C. Cleanable Tube Type; manufacturer standard:
 - 1. Well water applications.
 - 2. Waste water applications.

2.4 VOLATILE REFRIGERANT COILS

- A. Continuous circuit, straight tubes, dry expansion type equipped with multi-port distribution header, less expansion valve.
- B. Minimum 16 mm (5/8-inch) tube diameter.
- C. Designed for R22 or other EPA approved refrigerants.

2.5 ELECTRIC HEATING COILS - NOT USED

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS and as required by Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

Bancroft Architects + Engineers

03-01-20

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

DIVISION 26

Bancroft Architects + Engineers

12-30-2022

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

- Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.b. Are periodically inspected by a NRTL.
 - b. Are periodically inspected by a MAID.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
- 3. Components shall be compatible with each other and with the total assembly for the intended service.
- 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
 - 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

PPE, shall comply with the latest NFPA 70E, as well as the following requirements:

- Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
- 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
- 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards,

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

switchgear and motor control assemblies, control devices and other significant equipment.

- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.

- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.

- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

Bancroft Architects + Engineers

12-30-2022

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):
 D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
 D2304-10....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials
 D3005-10....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
 C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
 D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
 - E. Underwriters Laboratories, Inc. (UL):
 - 44-14.....Thermoset-Insulated Wires and Cables
 83-14.....Thermoplastic-Insulated Wires and Cables
 467-13.....Grounding and Bonding Equipment
 486A-486B-13.....Wire Connectors
 486C-13.....Splicing Wire Connectors
 486D-15....Sealed Wire Connector Systems
 486E-15....Equipment Wiring Terminals for Use with
 Aluminum and/or Copper Conductors

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 05 19 - 2

06/02/2023

Bancroft Architects + Engineers

12-30-2022

493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables

514B-12.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- E. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

 $26 \ 05 \ 19 \ - \ 4$

Bancroft Architects + Engineers

12-30-2022

3. Splice and insulation shall be product of the same manufacturer.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES - NOT USED

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 05 19 - 6

Bancroft Architects + Engineers

12-30-2022

boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 DIRECT BURIAL CABLE INSTALLATION - NOT USED

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 05 19 - 7

Bancroft Architects + Engineers

12-30-2022

resistance tester. Existing conductors to be reused shall also be tested.

- b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
- c. Perform phase rotation test on all three-phase circuits.

---END---

Bancroft Architects + Engineers

12-30-2022

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

- b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
- 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.
- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B1-13.....Standard Specification for Hard-Drawn Copper Wire
 - B3-13.....for Soft or Annealed Copper Wire
 - B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- - of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):
 - 70-17..... National Electrical Code (NEC)

70E-15.....National Electrical Safety Code

- 99-15.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):
 - 44-14Thermoset-Insulated Wires and Cables
 - 83-14Thermoplastic-Insulated Wires and Cables
 - 467-13Grounding and Bonding Equipment

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Steel or copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.
- 3.2 INACCESSIBLE GROUNDING CONNECTIONS
 - A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS - NOT USED

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.

- 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT - NOT USED

3.7 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.8 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.9 LIGHTNING PROTECTION SYSTEM - NOT USED

3.10 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.11 EXTERIOR LIGHT POLES - NOT USED

3.12 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.13 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.14 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

---END---

Bancroft Architects + Engineers

12-30-2022

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Conduits bracing.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
 - Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12.....North American Specification for the Design of Cold-Formed Steel Structural Members

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

C. National Electrical Manufacturers Association (NEMA): C80.1-15.....Electrical Rigid Steel Conduit C80.3-15.....Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit FB1-14.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13..... Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing) FB2.20-14.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable TC-2-13.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-13.....PVC Fittings for Use with Rigid PVC Conduit and Tubing D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-16.....Surface Metal Raceway and Fittings 6-07.....Electrical Rigid Metal Conduit - Steel 50-15..... Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13..... Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12.....Conduit, Tubing, and Cable Fittings and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings Contract No. 36C26319D0022

Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

12-30-2022

Bancroft Architects + Engineers

12-30-2022

651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit

797-07.....Electrical Metallic Tubing

1242-14.....Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Size: In accordance with the NEC, but not less than 13 mm (0.5inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
 - 4. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.
 - 5. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
 - 6. Flexible Metal Conduit: Shall conform to UL 1.
 - 7. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
 - Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
 - 9. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
- e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

- 5. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 6. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 05 33 - 6

06/02/2023

Bancroft Architects + Engineers

12-30-2022

F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
- Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.

Bancroft Architects + Engineers

12-30-2022

 Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 3. Connect recessed lighting fixtures to conduit runs with maximum 1.8 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- 4. Tightening set screws with pliers is prohibited.
- 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. NOT USED
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION

Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS

A. Use rigid steel or IMC conduits unless as shown on drawings.

Bancroft Architects + Engineers

12-30-2022

- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 05 33 - 11

Bancroft Architects + Engineers

12-30-2022

jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.

C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 05 33 - 13

Bancroft Architects + Engineers

12-30-2022

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the individual device up to the source and the on-site generator sources.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer, and performed by the equipment manufacturer's licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.

Bancroft Architects + Engineers

12-30-2022

- Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): 241-90.....Recommended Practice Electrical Systems in Commercial Buildings
 - 242-03.....Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
 - 399-97.....Recommended Practice for Industrial and Commercial Power Systems Analysis
 - 1584-02.....Performing Arc-Flash Hazards Calculations
 - 1584A-04.....Performing Arc-Flash Hazards Calculations Amendment 1
 - 1584B-11.....Performing Arc-Flash Hazards Calculations -Amendment 2
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 70E-18.....Standard for Electrical Safety in the Workplace 99-18.....Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 05 73 - 2

Bancroft Architects + Engineers

12-30-2022

- C. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and $\ensuremath{X/R}$ ratios.
- D. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
 - 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- E. Coordination Study:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.

- 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.
 - f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.c. Fuse rating and type.
- F. Arc Flash Calculations and Analysis:
 - 1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
 - 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
 - 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 05 73 - 4

Bancroft Architects + Engineers

12-30-2022

5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

- A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

Bancroft Architects + Engineers

12-30-2022

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 27 26 - 1

Bancroft Architects + Engineers

12-30-2022

- a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):WD 1-99(R2015).....General Color Requirements for Wiring Devices
 - WD 6-16 Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):

5-16.....Surface Metal Raceways and Fittings
20-10....General-Use Snap Switches
231-16....Power Outlets
467-13....Grounding and Bonding Equipment
498-17....Attachment Plugs and Receptacles
943-16....Ground-Fault Circuit-Interrupters
1449-14...Surge Protective Devices
1472-15....Solid State Dimming Controls

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 27 26 - 2

Bancroft Architects + Engineers

12-30-2022

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.

Bancroft Architects + Engineers

12-30-2022

- b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
- c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
- 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - Screws exposed while the wall plates are in place shall be the tamperproof type.
- C. Duplex Receptacles Non-hospital Grade: shall be the same as duplex receptacles hospital grade in accordance with sections 2.1A and 2.1B of this specification, except for the hospital grade listing.

 Bodies shall be nylon.
- D. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- E. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.
- F. Surge Protective (TVSS) Receptacles shall have integral surge suppression in line to ground, line to neutral, and neutral to ground modes.
 - TVSS Components: Multiple metal-oxide variators; with a nominal clamp-level rating of 400 Volts, and minimum single transient pulse energy dissipation of 210 Joules.
 - 2. Active TVSS Indication: LED, visible in face of device to indicate device is active or no longer in service.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 27 26 - 4

Bancroft Architects + Engineers

12-30-2022

G. Cable Reel Receptacles: - NOT USED

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.
- D. Manual dimming control and faceplates shall be ivory in color unless otherwise specified.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type smooth nylon . Oversize plates are not acceptable.
- B. Color shall be ivory unless otherwise specified.
 - C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
 - D. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.

Bancroft Architects + Engineers

12-30-2022

E. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - Receptacles shall be duplex,. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
 - 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
 - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
 - 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.

Bancroft Architects + Engineers

12-30-2022

- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches to center line of box) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches to center line of box) above floor.
- J. Install receptacles 450 mm (16 inches to bottom of box) above floor, and 152 mm (4 inches to bottom of box) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 27 26 - 7

Bancroft Architects + Engineers

12-30-2022

- b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
- c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
- d. Test GFCI receptacles.
- Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

Bancroft Architects + Engineers

12-30-2022

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (with the exception of elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.

terminations.

- E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- G. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 29 11 - 1

Bancroft Architects + Engineers

12-30-2022

- a. Submit sufficient information to demonstrate compliance with drawings and specifications.
- b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - Elementary schematic diagrams shall be provided for clarity of operation.
 - Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 29 11 - 2

Bancroft Architects + Engineers

12-30-2022

B. Institute of Electrical and Electronic Engineers (IEEE): 519-14..... Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1-12.....Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus C. International Code Council (ICC): IBC-21..... International Building Code D. National Electrical Manufacturers Association (NEMA): ICS 1-00(R2015).....Industrial Control and Systems: General Requirements ICS 1.1-84(R2020).....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2-00(R2020).....Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts ICS 4-15.....Industrial Control and Systems: Terminal Blocks ICS 6-93(R2016).....Industrial Control and Systems: Enclosures ICS 7-20.....Industrial Control and Systems: Adjustable-Speed Drives ICS 7.1-14.....Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems E. National Fire Protection Association (NFPA): 70-23.....National Electrical Code (NEC) F. Underwriters Laboratories Inc. (UL): 508A-18.....Industrial Control Panels 1449-14.....Surge Protective Devices 61800-5-1-12.....Adjustable Speed Electrical Power Drive Systems PART 2 - PRODUCTS 2.1 MOTOR CONTROLLERS A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with circuit breaker, fused switch, and disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
- 1. Circuit Breakers:
 - a. Bolt-on thermal-magnetic type with a minimum interrupting rating as indicated on the drawings.
 - b. Equipped with automatic, trip free, non-adjustable, inverse-time, and instantaneous magnetic trips for less than 400A. The magnetic trip shall be adjustable from 5x to 10x for breakers 400A and greater.
 - c. Additional features shall be as follows:
 - 1) A rugged, integral housing of molded insulating material.
 - 2) Silver alloy contacts.
 - 3) Arc quenchers and phase barriers for each pole.
 - 4) Quick-make, quick-break, operating mechanisms.
 - 5) A trip element for each pole, a common trip bar for all poles, and one operator for all poles.

2. Fused Switches:

- a. Quick-make, quick-break type.
- b. Minimum duty rating shall be NEMA classification General Duty (GD) for 240 Volts and NEMA classification Heavy Duty (HD) for 480 Volts.
- c. Horsepower rated, and shall have the following features:
 - 1) Copper blades, visible in the OFF position.
 - 2) An arc chute for each pole.
 - Fuse holders for the sizes and types of fuses specified or as shown on the drawings.
- D. Enclosures:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
- Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
- 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Electronic type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - 5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.
 - Induction overload relays shall have changeable heater elements, manual reset, ambient temperature compensation, sensitivity to single-phasing, and shall have selectable trip classes of 10, 20 and 30.

Bancroft Architects + Engineers

12-30-2022

- Temperature probe relays shall be connected to thermistors or resistance temperature detectors (RTD) embedded in the motor winding.
- 8. Electronic overload relays shall utilize internal current transformers and electro-mechanical components. The relays shall have ambient temperature compensation, single-phase protection, manual or automatic reset, and trip classes of 10, 15, 20 and 30. The relay shall provide fault cause indication, including jam/stall, ground fault, phase loss, and overload.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - Units shall include thermal overload relays, on-off operator, red pilot light, normally open auxiliary contacts.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 29 11 - 6

Bancroft Architects + Engineers

12-30-2022

- C. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.4 REDUCED VOLTAGE MOTOR CONTROLLERS

- A. Shall be in accordance with applicable portions of 2.1 above.
- B. Shall have closed circuit transition.
- C. Shall limit inrush currents to not more than 70 percent of the locked rotor current.
- D. Provide phase loss protection for each motor controller, with contacts to de-energize the motor controller upon loss of any phase.

2.5 MEDIUM-VOLTAGE MOTOR CONTROLLERS

- A. Shall be in accordance with applicable portions of 2.1 above, and in accordance with applicable provisions of Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR.
- B. Interrupting ratings shall be not less than the maximum short circuit currents available as shown on the drawings.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- C. Shall have the following additional features:
 - Metal enclosed, free-standing, vacuum break, reduced-voltage, primary reactor, drawout type combined with non-load break fused disconnect switch.
 - 2. Shall include the following components:
 - a. Three pole, magnetically held, drawout type, with start/run contactor(s).
 - b. Equipped for the number of motor speeds as shown on the drawings.
 - c. Primary reactor with taps for 50, 65 and 80 percent of line voltage.
 - d. Definite time transfer relay.
 - e. Three current limiting, type "R" power type fuses with 50,000 amperes interrupting capability or as indicated on drawings.
 - f. Control power transformer (CPT), protected with current limiting fuses. The CPT shall be rated 60kV BIL.
 - g. Three current transformers and overcurrent protective devices.
 - h. Zero-sequence current transformers and associated devices for ground fault protection.
 - i. Under-voltage protection.
 - j. Protection against single phasing.
 - k. Stator thermal protection.
 - 1. Indicating-type ammeter and selector switch.
 - m. Red and green indicating lights.
 - 3. A separate enclosure for each motor controller.
 - Shall be isolated by an externally operated mechanism. The secondary of the control power transformer shall also be opened by this device.
 - Suitable and adequate compartments and barriers for medium-voltage components. Isolate the power bus from the normally accessible compartments.
 - Medium-voltage line connections shall be automatically shuttered closed when the motor controller is in the racked-out position. The disconnection shall be clearly indicated.
 - 7. Interlocks shall prevent:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- a. Inadvertent operation of the isolating mechanism under load.
- b. Opening the medium-voltage compartment before the controller is isolated.
- c. Closing of the line contactor while the enclosure door is open.
- Current and potential transformers for operating remote recording watt-hour and demand meters and the indicating meters at the motor controller.
- 9. Provide lock-open padlocking provisions.
- 10. Furnish accessories as recommended by the manufacturer of the motor controllers to facilitate convenient operation and maintenance of the controllers.

2.6 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 29 11 - 9

Bancroft Architects + Engineers

12-30-2022

- Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
- 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
- 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
- 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
- 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
- Provide automatic shutdown upon receiving a power transfer warning signal from an automatic transfer switch. VSMC shall automatically restart motor after the power transfer.
 - 9. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.

Bancroft Architects + Engineers

12-30-2022

- 10. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
 - 11. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - Typical monitoring functions shall include but not be limited to:
 a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - 1. Inverter Output Contactor and Bypass Contactor: Load-break NEMArated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- C. Install manual motor controllers in flush enclosures in finished areas.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

 $26\ 29\ 11\ -\ 12$

Bancroft Architects + Engineers

12-30-2022

- D. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- E. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- F. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify COR before increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by theCOR. ---END---

Bancroft Architects + Engineers

12-30-2022

PSECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 29 21 - 1

Bancroft Architects + Engineers

12-30-2022

- 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 - FU 1-12.....Low Voltage Cartridge Fuses
 - KS 1-13......Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL): Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 29 21 - 2

Bancroft Architects + Engineers

12-30-2022

98-16..... Switches

248 1-11.....Low Voltage Fuses

489-13..... Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.
- 10. Electrically operated switches shall only be installed where shown on the drawings.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 29 21 - 3

Bancroft Architects + Engineers

12-30-2022

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty (HD).

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits: As shown on drawings.
- C. Other Branch Circuits: As shown on drawings.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

A. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

Bancroft Architects + Engineers

12-30-2022

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the Resident Engineer COR.

---END---

Bancroft Architects + Engineers

12-30-2022

SECTION 26 36 23 AUTOMATIC TRANSFER SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of open-transition automatic transfer switches with bypass isolation, indicated as automatic transfer switches or ATS in this section.

1.2 RELATED WORK

- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- F. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personal safety and to provide a low impedance path for possible ground fault currents.
- H. Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- I. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- L. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General communications requirements that are common to more than one section in Division 27.
- M. Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATION SYSTEMS: Raceways for communications cabling.
- N. SECTION 27 15 00, COMMUNICATIONS HORIZONTAL CABLING: Communications media for interconnecting automatic transfer switches and remote control and annunciation components.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

Bancroft Architects + Engineers

12-30-2022

- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 4 hours maximum of notification.
- C. Automatic transfer switch, bypass/isolation switch, and annunciation control panels shall be products of the same manufacturer.

1.4 FACTORY TESTS

- A. ATS shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Perform visual inspection to verify that each ATS is as specified.
 - Perform mechanical test to verify that ATS sections are free of mechanical defects.
 - 3. Perform insulation resistance test to ensure electrical integrity and continuity of entire system.
 - 4. Perform main switch contact resistance test.
 - 5. Perform electrical tests to verify complete system electrical operation.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include voltage rating, continuous current rating, number of phases, withstand and closing rating, dimensions, weights, mounting details, conduit entry provisions, front view, side view, equipment and device arrangement, elementary and interconnection wiring diagrams, factory relay settings, and accessories.
 - c. For automatic transfer switches that are networked together to a common means of annunciation and/or control, submit

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

interconnection diagrams as well as site and building plans, showing connections for normal and emergency sources of power, load, control and annunciation components, and interconnecting communications paths. Equipment locations on the diagrams and plans shall match the site, building, and room designations on the drawings.

- d. Complete nameplate data, including manufacturer's name and catalog number.
- e. A copy of the markings that are to appear on the automatic transfer switches when installed.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the automatic transfer switches.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - 3) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Include complete "As Installed" diagrams that indicate all pieces of equipment and their interconnecting wiring.
 - Include complete diagrams of the internal wiring for each piece of equipment, including "As Installed" revisions of the diagrams.
 - 3) The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
- 3. Certifications:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

- a. When submitting the shop drawings, submit a certified test report from a recognized independent testing laboratory that a representative sample has passed UL 1008 prototype testing.
- b. Two weeks prior to final inspection, submit the following.
 - 1) Certification by the manufacturer that the ATS conforms to the requirements of the drawings and specifications.
 - Certification by the Contractor that transfer switches have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 446-95.....Emergency and Standby Power Systems for Industrial and Commercial Applications C37.90.1-12....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus C62.41.1-02....Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits C62.41.2-02.....Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC
 - Power Circuits
- C. International Code Council (ICC):

IBC-15.....International Building Code

- D. National Electrical Manufacturers Association (NEMA):
 - 250-14.....Enclosures for Electrical Equipment (1000 Volts Maximum)
 - ICS 6-06.....Enclosures
 - ICS 4-15..... Application Guideline for Terminal Blocks
 - MG 1-16.....Motors and Generators
- E. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 36 23 - 4

Bancroft Architects + Engineers

12-30-2022

99-15.....Health Care Facilities

110-16..... Emergency and Standby Power Systems

F. Underwriters Laboratories, Inc. (UL):

50-15.....Enclosures for Electrical Equipment

508-99..... Equipment

891-05.....Switchboards

1008-14.....Transfer Switch Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Automatic transfer switches shall comply with IEEE, NEMA, NFPA, UL, and have the following features:
 - Automatic transfer switches shall be open transition switches, 3 or 4- pole as per contract drawings, draw-out construction, electrically operated, mechanically held open contact type, without integral overcurrent protection. Automatic transfer switches utilizing automatic or non-automatic molded case circuit breakers, insulated case circuit breakers, or power circuit breakers as switching mechanisms are not acceptable.
 - Automatic transfer switches shall be completely factory-assembled and wired such that only external circuit connections are required in the field.
 - 3. Each automatic transfer switch shall be equipped with an integral bypass/isolation switch.
 - 4. Ratings:
 - a. Phases, voltage, continuous current, poles, and withstand and closing ratings shall be as shown on the drawings.
 - b. Transfer switches are to be rated for continuous duty at specified continuous current rating on 60Hz systems.
 - c. Maximum automatic transfer switch rating: 800 A.
 - 5. Markings:
 - a. Markings shall be in accordance with UL 1008.
 - 6. Tests:
 - a. Automatic transfer switches shall be tested in accordance with UL 1008. The contacts of the transfer switch shall not weld during

Bancroft Architects + Engineers

12-30-2022

the performance of withstand and closing tests when used with the upstream overcurrent device and available fault current specified.

- 7. Surge Withstand Test:
 - a. Automatic transfer switches utilizing solid-state devices in sensing, relaying, operating, or communication equipment or circuits shall comply with IEEE C37.90.1.
- 8. Housing:
 - a. Enclose automatic transfer switches in wall- or floor-mounted steel cabinets, with metal gauge not less than No. 14, in accordance with UL 508, or in a switchboard assembly in accordance with UL 891, as shown on the drawings.
 - b. Enclosure shall be constructed so that personnel are protected from energized bypass-isolation components during automatic transfer switch maintenance.
 - c. Automatic transfer switch components shall be removable without disconnecting external source or load power conductors.
 - d. Finish: Cabinets shall be given a phosphate treatment, painted with rust-inhibiting primer, and finish-painted with the manufacturer's standard enamel or lacquer finish.
 - e. Viewing Ports: Provide viewing ports so that contacts may be inspected without disassembly.
- 9. Operating Mechanism:
 - a. Actuated by an electrical operator.
 - b. Electrically and mechanically interlocked so that the main contact cannot be closed simultaneously in either normal and emergency position.
 - c. Normal and emergency main contacts shall be mechanically locked in position by the operating linkage upon completion of transfer. Release of the locking mechanism shall be possible only by normal operating action.
 - d. Contact transfer time shall not exceed six cycles.
 - e. Operating mechanism components and mechanical interlocks shall be insulated or grounded.

26 36 23 - 6

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- 10. Contacts:
 - a. Main contacts: Silver alloy.
 - b. Neutral contacts: Silver alloy, with same current rating as phase contacts continuous current rating not less than twice the rating of the phase contacts.
 - c. Current carrying capacity of arcing contacts shall not be used in the determination of the automatic transfer switch rating, and shall be separate from the main contacts.
 - d. Main and arcing contacts shall be visible for inspection with cabinet door open and barrier covers removed.
- 11. Manual Operator:
 - Capable of operation by one person in either direction under no load.
- 12. Replaceable Parts:
 - a. Include the main and arcing contacts individually or as units, as well as relays, and control devices.
 - b. Automatic transfer switch contacts and accessories shall be replaceable from the front without removing the switch from the cabinet and without removing main conductors.
- 13. Sensing Features:
 - a. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100% of nominal, and dropout voltage is adjustable from 75 to 98% of pickup value. Factory set for pickup at 90% and dropout at 85%.
 - b. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
 - c. Voltage/Frequency Lockout Relay: Prevent premature transfer to the engine-generator. Pickup voltage shall be adjustable from 85 to 100% of nominal. Factory set for pickup at 90%. Pickup frequency shall be adjustable from 90 to 100% of nominal. Factory set for pickup at 95%.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- d. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
- e. Test Switch: Simulate normal-source failure.
- f. Switch-Position Indication: Indicate source to which load is connected.
- g. Source-Available Indication: Supervise sources via transfer switch normal- and emergency-source sensing circuits.
- h. Normal Power Indication: Indicate "Normal Source Available."
- i. Emergency Power Indication: Indicate "Emergency Source
 Available."
- j. Transfer Override Control: Overrides automatic retransfer control so that automatic transfer switch shall remain connected to emergency power source regardless of condition of normal source. Control panel shall indicate override status.
- k. Engine Starting Contacts: One isolated and normally closed and one isolated and normally open; rated 5 A at 30 V DC minimum.
- Engine Shutdown Contacts: Time delay adjustable from zero to 15 minutes, and factory set for 5 minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- m. Engine-Generator Exerciser: Programmable exerciser starts enginegenerator(s) and transfers load to them from normal source for a preset time, then retransfers and shuts down engine-generator(s) after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period.
- 14. Controls:
 - a. Controls shall provide indication of switch status and be equipped with alarm diagnostics.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

- b. Controls shall control operation of the automatic transfer switches.
- 15. Factory Wiring: Train and bundle factory wiring and label either by color-code or by numbered/lettered wire markers. Labels shall match those on the shop drawings.
- 16. Annunciation, Control, and Programming Interface Components: Devices for communicating with remote programming devices, annunciators, or control panels shall have open-protocol communication capability matched with remote device.
- 17. Provide contacts for connection to elevator controllers, one closed when automatic transfer switch is connected to the normal source, and one closed when automatic transfer switch is connected to the emergency source.
- 18. Elevator Pre-Transfer Signal Relay: Provide a pre-signal relay on all automatic transfer switches that will indicate to an elevator controller or controllers that a transfer or re-transfer is about to occur.
- 19. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Control connection to motor starters is through wiring external to the automatic transfer switch. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated. Relay contacts handling motor-control circuit in-rush and seal currents are rated for actual currents to be encountered.

2.2 SEQUENCE OF OPERATION

- A. The specified voltage decrease in one or more phases of the normal power source shall initiate the transfer sequence. The automatic transfer switch shall start the engine-generator(s) after a specified time delay to permit override of momentary dips in the normal power source.
- B. The automatic transfer switch shall transfer the load from normal to emergency source when the frequency and voltage of the enginegenerator(s) have attained the specified percent of rated value.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

- C. Engine Start: A voltage decrease, at any automatic transfer switch, in one or more phases of the normal power source to less than the specified value of normal shall start the engine-generator(s) after a specified time delay.
- D. Transfer to Emergency System Loads: Automatic transfer switches for Emergency System loads shall transfer their loads from normal to emergency source when frequency and voltage of the engine-generator(s) have attained the specified percent of rated value. Only those switches with deficient normal source voltage shall transfer.
- E. Transfer to Equipment Branch Loads: Automatic transfer switches for Equipment Branch loads shall transfer their loads to the enginegenerator on a time-delayed, staggered basis, after the Emergency System switches have transferred. Only those switches with deficient normal source voltage shall transfer.
- F. Retransfer to Normal (All Loads): Automatic transfer switches shall retransfer the load from emergency to normal source upon restoration of normal supply in all phases to the specified percent or more of normal voltage, and after a specified time delay. Should the emergency source fail during this time, the automatic transfer switches shall immediately transfer to the normal source whenever it becomes available. After restoring to normal source, the engine-generator(s) shall continue to run unloaded for a specified interval before shutdown.

2.3 BYPASS-ISOLATION SWITCH

- A. Provide each automatic transfer switch with two-way bypass-isolation manual type switch. The bypass-isolation switch shall permit load bypass to either normal or emergency power source and complete isolation of the automatic transfer switch, independent of transfer switch position. Bypass and isolation shall be possible under all conditions including when the automatic transfer switch is removed from service.
- B. Operation: The bypass-isolation switch shall have provisions for operation by one person through the movement of a maximum of two handles at a common dead front panel in no more than 15 seconds. Provide a lock, which must energize to unlock the bypass switch, to

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

prevent bypassing to a dead source. Provide means to prevent simultaneous connection between normal and emergency sources.

- Bypass to normal (or emergency): Operation of bypass handle shall allow direct connection of the load to the normal (or emergency) source, without load interruption or by using a break-before-make design, or provide separate load interrupter contacts to momentarily interrupt the load.
 - a. Ensure continuity of auxiliary circuits necessary for proper operation of the system.
 - b. A red indicating lamp shall light when the automatic transfer switch is bypassed.
 - c. Bypassing source to source: If the power source is lost while in the bypass position, bypass to the alternate source shall be achievable without re-energization of the automatic transfer switch service and load connections.
- Isolation: Operation of the isolating handle shall isolate all live power conductors to the automatic transfer switch without interruption of the load.
 - a. Interlocking: Provide interlocking as part of the bypassisolation switch to eliminate personnel-controlled sequence of operation, and to prevent operation to the isolation position until the bypass function has been completed.
 - b. Padlocking: Include provisions to padlock the isolating handle in the isolated position.
 - c. Visual verification: The isolation blades shall be visible in the isolated position.
- 3. Testing: It shall be possible to test (normal electrical operation) the automatic transfer switch and engine-generator(s) with the isolation contacts closed and the load bypassed without interruption of power to the load.
- C. Ratings: The electrical capabilities and ratings of the bypassisolation switch shall be compatible with those of the associated automatic transfer switch, including any required additional withstand tests.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

2.4 REMOTE ANNUNCIATOR SYSTEM

- A. Remote annunciator panel shall annunciate conditions for indicated automatic transfer switches. Annunciation shall include the following:
 - 1. Sources available, as defined by actual pickup and dropout settings of automatic transfer switch controls.
 - 2. Switch position.
 - 3. Switch in test mode.
 - 4. Failure of communication link.
- B. Remote annunciator panel shall be visual and audible type with LED display panel, audible signal, and silencing switch.
 - Panel shall indicate each automatic transfer switch monitored, the location of automatic transfer switch, and the identity of load it serves.
 - 2. Mounting: Steel cabinet, flush or surface mounted, as shown on the drawings.

2.5 REMOTE ANNUNCIATOR AND CONTROL SYSTEM

- A. Include the following functions for indicated automatic transfer switches:
 - Indication of sources available, as defined by actual pickup and dropout settings of automatic transfer switch controls.
 - 2. Indication of automatic transfer switch position.
 - 3. Indication of automatic transfer switch in test mode.
 - 4. Indication of failure of communication link.
 - 5. Key-switch or user-code access to control functions of panel.
 - 6. Control of automatic transfer switch test initiation.
 - 7. Control of automatic transfer switch operation in either direction.
 - 8. Control of time-delay bypass for transfer to normal source.
- B. Malfunction of remote annunciator and control system or communication link shall not affect functions of automatic transfer switches. Automatic transfer switch sensing, controlling, or operating functions shall not depend on remote annunciator and control system for proper operation.

Bancroft Architects + Engineers

12-30-2022

- C. Remote annunciation and control system shall include the following features:
 - 1. Touchscreen type operator interface.
 - 2. Control and indication means grouped together for each automatic transfer switch.
 - 3. Label each indication and control group. Indicate the automatic transfer switch it controls, the location of the automatic transfer switch, and the identity of the load that it serves.
 - 4. Digital Communication Capability: Matched to that of automatic transfer switches supervised.
 - 5. Mounting: Steel cabinet, flush or surface mounted, as shown on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install automatic transfer switches and associated remote components in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Anchor automatic transfer switches with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. An authorized representative of the automatic transfer switch manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the Resident Engineer. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted and tested in accordance with the manufacturer's recommendations.
- B. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

12-30-2022

- c. Confirm correct application of manufacturer's recommended lubricants.
- d. Verify appropriate anchorage, required area clearances, and correct alignment.
- e. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization.
- f. Verify grounding connections.
- g. Verify ratings of sensors.
- h. Vacuum-clean enclosure interior. Clean enclosure exterior.
- i. Exercise all active components.
- j. Verify that manual transfer warning signs are properly placed.
- k. Verify the correct operation of all sensing devices, alarms, and indicating devices.
- 2. Electrical tests:
 - a. Perform insulation-resistance tests.
 - b. After energizing circuits, demonstrate the interlocking sequence and operational function for each automatic transfer switch at least three times.
 - Test bypass-isolation unit functional modes and related automatic transfer switch operations.
 - Power failure of normal source shall be simulated by opening upstream protective device. This test shall be performed a minimum of five times.
 - 3) Power failure of emergency source with normal source available shall be simulated by opening upstream protective device for emergency source. This test shall be performed a minimum of five times.
 - Low phase-to-ground voltage shall be simulated for each phase of normal source.
 - 5) Operation and settings shall be verified for specified automatic transfer switch operational feature, such as override time delay, transfer time delay, return time delay,

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

12-30-2022

engine shutdown time delay, exerciser, auxiliary contacts, and supplemental features.

- Verify pickup and dropout voltages by data readout or inspection of control settings.
- 7) Verify that bypass and isolation functions perform correctly, including the physical removal of the automatic transfer switch while in bypass mode.
- c. Ground-fault tests: Verify that operation of automatic transfer switches shall not cause nuisance tripping or alarms of ground fault protection on either source.
 - d. When any defects are detected, correct the defects and repeat the tests as requested by the COR at no additional cost to the Government.

3.3 FIELD SETTINGS VERIFICATION

A. The automatic transfer switch settings shall be verified in the field by an authorized representative of the manufacturer.

3.4 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the automatic transfer switches are in good operating condition and properly performing the intended function.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for one 4-hour training period for instructing personnel in the maintenance and operation of the automatic transfer switches, on the dates requested by the COR.

---END---

Bancroft Architects + Engineers

12-30-2022

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 02 41 00, DEMOLITION: Removal and disposal of lamps and ballasts.
 - C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
 - D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
 - E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
 - F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.

Bancroft Architects + Engineers

12-30-2022

- b. Material and construction details, include information on housing and optics system.
- c. Physical dimensions and description.
- d. Wiring schematic and connection diagram.
- e. Installation details.
- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

Bancroft Architects + Engineers

	12-30-2022
в.	American Society for Testing and Materials (ASTM):
	C635/C635M REV A-13Manufacture, Performance, and Testing of Metal
	Suspension Systems for Acoustical Tile and Lay-
	in Panel Ceilings
с.	Environmental Protection Agency (EPA):
	40 CFR 261 Identification and Listing of Hazardous Waste
D.	Federal Communications Commission (FCC):
	CFR Title 47, Part 15Radio Frequency Devices
	CFR Title 47, Part 18Industrial, Scientific, and Medical Equipment
Ε.	Illuminating Engineering Society of North America (IESNA):
	LM-79-08 Measurements of
	Solid-State Lighting Products
	LM-80-15 Measuring Lumen Maintenance of LED Light
	Sources
	LM-82-12Characterization of LED Light Engines and LED
	Lamps for Electrical and Photometric Properties
	as a Function of Temperature
F.	Institute of Electrical and Electronic Engineers (IEEE):
	C62.41-91(R1995)Surge Voltages in Low Voltage AC Power Circuits
G.	International Code Council (ICC):
	IBC-15Code
Η.	National Electrical Manufacturer's Association (NEMA):
	C78.376-14Chromaticity of Fluorescent Lamps
	C82.1-04(R2015)Lamp Ballasts - Line Frequency Fluorescent Lamp
	Ballasts
	C82.2-02(R2016)Method of Measurement of Fluorescent Lamp
	Ballasts
	C82.4-17Lamp Ballasts - Ballasts for High-Intensity
	Discharge and Low-Pressure Sodium (LPS) Lamps
	(Multiple-Supply Type)
	C82.11-17 Lamp Ballasts - High Frequency Fluorescent Lamp
	Ballasts
	LL 9-11Dimming of T8 Fluorescent Lighting Systems

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 51 00 - 3

Bancroft Architects + Engineers

12-30-2022

SSL 1-16.....Electronic Drivers for LED Devices, Arrays, or Systems
I. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 101-18.....Life Safety Code
J. Underwriters Laboratories, Inc. (UL):

- . Underwritters Laboratorres, inc. (UL)
 - 496-17....Lampholders
 - 542-05..... Fluorescent Lamp Starters
 - 844-12..... Luminaires for Use in Hazardous (Classified) Locations
 - 924-16..... Emergency Lighting and Power Equipment
 - 935-01.....Bluorescent-Lamp Ballasts
 - 1029-94..... High-Intensity-Discharge Lamp Ballasts

1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts

1598-08	Luminaires
1574-04	Track Lighting Systems
2108-15	Low-Voltage Lighting Systems
8750-15	Light Emitting Diode (LED) Light Sources for
	Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 51 00 - 4

Bancroft Architects + Engineers

12-30-2022

- 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Ballasts and lamps shall be serviceable while the fixture is in its normally installed position. Ballasts shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Lamp Sockets:
 - Fluorescent: Single slot entry type, requiring a one-quarter turn of the lamp after insertion. Lampholder contacts shall be the biting edge type.
 - 2. Compact Fluorescent: 4-pin.
 - 3. High Intensity Discharge (HID): Porcelain.
- E. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- F. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- G. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 - Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
 - 3. Exterior finishes shall be as shown on the drawings.
- H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- I. Light Transmitting Components for Fluorescent Fixtures:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 51 00 - 5

Bancroft Architects + Engineers

12-30-2022

- 1. Shall be 100 percent virgin acrylic.
- 2. Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.
- 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.
- J. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.
- K. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures.
- 2.2 BALLASTS NOT USED

2.3 FLUORESCENT EMERGENCY BALLAST - NOT USED

2.4 EMERGENCY LIGHTING UNIT

- A. Complete, self-contained unit with batteries, battery charger, one or more local or remote lamp heads with lamps, under-voltage relay, and test switch.
 - Enclosure: Shall be impact-resistant thermoplastic cast aluminum. Enclosure shall be suitable for the environmental conditions in which installed.
 - 2. Lamp Heads: Horizontally and vertically adjustable, mounted on the face of the unit, except where otherwise indicated.
 - Lamps: Shall be sealed-beam MR-16 halogen, rated not less than 12 watts at the specified DC voltage.
 - Battery: Shall be maintenance-free nickel-cadmium. Minimum normal life shall be minimum of 10 years.
 - 5. Battery Charger: Dry-type full-wave rectifier with charging rates to maintain the battery in fully-charged condition during normal operation, and to automatically recharge the battery within 12 hours following a 1-1/2 hour continuous discharge.

Bancroft Architects + Engineers

12-30-2022

- Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.
- 2.5 LAMPS NOT USED

2.6 RADIO-INTERFERENCE-FREE FLUORESCENT FIXTURES - NOT USED

2.7 WALL MOUNTED FLUORESCENT BEDLIGHT FIXTURES - NOT USED

2.8 X-RAY FILM ILLUMINATORS - NOT USED

2.9 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.10 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.

Bancroft Architects + Engineers

12-30-2022

- 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: \leq 20%.
 - g. Comply with FCC 47 CFR Part 15.
- LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.

Bancroft Architects + Engineers

12-30-2022

- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed lighting fixtures:
 - a. All fixture mounting devices connecting fixtures to the ceiling system or building structure shall have a capacity for a horizontal force of 100 percent of the fixture weight and a vertical force of 400 percent of the fixture weight.
 - b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
 - c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.
 - Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

26 51 00 - 9

Bancroft Architects + Engineers

12-30-2022

approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.

- d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 5. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - The outlet box is supported vertically from the building structure.
 - d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 6. Single or double pendant-mounted lighting fixtures:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 51 00 - 10

Bancroft Architects + Engineers

12-30-2022

- a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 7. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT, and Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform the following:

- 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
- 2. Electrical tests:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

26 51 00 - 11

Bancroft Architects + Engineers

12-30-2022

- a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
- b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

DIVISION 27

Bancroft Architects + Engineers

09-01-19

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

А	Ampere
AC	Alternating Current
AE	Architect and Engineer
AFF	Above Finished Floor
AHJ	Authority Having Jurisdiction
ANSI	American National Standards Institute
AWG	American Wire Gauge (refer to STP and UTP)
AWS	Advanced Wireless Services
BCT	Bonding Conductor for Telecommunications (also
	Telecommunications Bonding Conductor (TBC))
BDA	Bi-Directional Amplifier
BICSI	Building Industry Consulting Service International
BIM	Building Information Modeling
BOM	Bill of Materials
BTU	British Thermal Units
BUCR	Back-up Computer Room
BTS	Base Transceiver Station

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

09-01-19

	09-01-		
CAD	AutoCAD		
CBOPC	Community Based Out Patient Clinic		
CBC	Coupled Bonding Conductor		
CBOC	Community Based Out Patient Clinic (refer to CBOPC,		
	OPC, VAMC)		
CCS	TIP's Cross Connection System (refer to VCCS and		
	HCCS)		
CFE	Contractor Furnished Equipment		
CFM	US Department of Veterans Affairs Office of		
	Construction and Facilities Management		
CFR	Consolidated Federal Regulations		
CIO	Communication Information Officer (Facility, VISN or		
	Region)		
cm	Centimeters		
СО	Central Office		
COR	Contracting Officer Representative		
CPU	Central Processing Unit		
CSU	Customer Service Unit		
CUP	Conditional Use Permit(s) - Federal/GSA for VA		
dB	Decibel		
dBm	Decibel Measured		
dBmV	Decibel per milli-Volt		
DC	Direct Current		
DEA	United States Drug Enforcement Administration		
DSU	Data Service Unit		
EBC	Equipment Bonding Conductor		
ECC	Engineering Control Center (refer to DCR, EMCR)		
EDGE	Enhanced Data (Rates) for GSM Evolution		
EDM	Electrical Design Manual		
EMCR	Emergency Management Control Room (refer to DCR, ECC)		
EMI	Electromagnetic Interference (refer to RFI)		

Bancroft Architects + Engineers

	Bancroft Architects + Engineers 09-01-1		
EMS	Emergency Medical Service		
EMT	Electrical Metallic Tubing or thin wall conduit		
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,		
	LEC)		
EPBX	Electronic Digital Private Branch Exchange		
ESR	Vendor's Engineering Service Report		
FA	Fire Alarm		
FAR	Federal Acquisition Regulations in Chapter 1 of Title		
	48 of Code of Federal Regulations		
FMS	VA's Headquarters or Medical Center Facility's		
	Management Service		
FR	Frequency (refer to RF)		
FTS	Federal Telephone Service		
GFE	Government Furnished Equipment		
GPS	Global Positioning System		
GRC	Galvanized Rigid Metal Conduit		
GSM	Global System (Station) for Mobile		
HCCS	TIP's Horizontal Cross Connection System (refer to		
	CCS & VCCS)		
HDPE	High Density Polyethylene Conduit		
HDTV	Advanced Television Standards Committee High-		
	Definition Digital Television		
HEC	Head End Cabinets(refer to HEIC, PA)		
HEIC	Head End Interface Cabinets(refer to HEC, PA)		
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)		
HSPA	High Speed Packet Access		
HZ	Hertz		
IBT	Intersystem Bonding Termination (NEC 250.94)		
IC	Intercom		
ICRA	Infectious Control Risk Assessment		
IDEN	Integrated Digital Enhanced Network		

Bancroft Architects + Engineers

00	-01	10
09-	-01·	-13

	09-01-	
IDC	Insulation Displacement Contact	
IDF	Intermediate Distribution Frame	
ILSM	Interim Life Safety Measures	
IMC	Rigid Intermediate Steel Conduit	
IRM	Department of Veterans Affairs Office of Information	
	Resources Management	
ISDN	Integrated Services Digital Network	
ISM	Industrial, Scientific, Medical	
IWS	Intra-Building Wireless System	
LAN	Local Area Network	
LBS	Location Based Services, Leased Based Systems	
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)	
LED	Light Emitting Diode	
LMR	Land Mobile Radio	
LTE	Long Term Evolution, or 4G Standard for Wireless Data	
	Communications Technology	
М	Meter	
MAS	Medical Administration Service	
MATV	Master Antenna Television	
MCR	Main Computer Room	
MCOR	Main Computer Operators Room	
MDF	Main Distribution Frame	
MH	Manholes or Maintenance Holes	
MHz	Megaherts (10 ⁶ Hz)	
mm	Millimeter	
MOU	Memorandum of Understanding	
MW	Microwave (RF Band, Equipment or Services)	
NID	Network Interface Device (refer to DEMARC)	
NEC	National Electric Code	
NOR	Network Operations Room	

Bancroft Architects + Engineers

	Bancroft Architects + Engineers 09-01-1
NS	Nurse Stations
NTIA	U.S. Department of Commerce National
	Telecommunications and Information Administration
OEM	Original Equipment Manufacturer
OI&T	Office of Information and Technology
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)
OSH	Department of Veterans Affairs Office of Occupational
	Safety and Health
OSHA	United States Department of Labor Occupational Safety
	and Health Administration
OTDR	Optical Time-Domain Reflectometer
PA	Public Address System (refer to HE, HEIC, RPEC)
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)
PCR	Police Control Room (refer to SPCC, could be
	designated SCC)
PCS	Personal Communications Service (refer to UPCS)
PE	Professional Engineer
PM	Project Manager
PoE	Power over Ethernet
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,
	PBX)
PSTN	Public Switched Telephone Network
PSRAS	Public Safety Radio Amplification Systems
PTS	Pay Telephone Station
PVC	Poly-Vinyl Chloride
PWR	Power (in Watts)
RAN	Radio Access Network
RBB	Rack Bonding Busbar
RE	Resident Engineer or Senior Resident Engineer
RF	Radio Frequency (refer to FR)
RFI	Radio Frequency Interference (refer to EMI)

Bancroft Architects + Engineers

	Bancroft Architects + Engineers 09-01-19
RFID	RF Identification (Equipment, System or Personnel)
RMC	Rigid Metal Conduit
RMU	Rack Mounting Unit
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,
	PA)
RTLS	Real Time Location Service or System
RUS	Rural Utilities Service
SCC	Security Control Console (refer to PCR, SPCC)
SMCS	Spectrum Management and Communications Security
	(COMSEC)
SFO	Solicitation for Offers
SME	Subject Matter Experts (refer to AHJ)
SMR	Specialized Mobile Radio
SMS	Security Management System
SNMP	Simple Network Management Protocol
SPCC	Security Police Control Center (refer to PCR, SMS)
STP	Shielded Balanced Twisted Pair (refer to UTP)
STR	Stacked Telecommunications Room
TAC	VA's Technology Acquisition Center, Austin, Texas
TCO	Telecommunications Outlet
TER	Telephone Equipment Room
TGB	Telecommunications Grounding Busbar (also Secondary
	Bonding Busbar (SBB))
TIP	Telecommunications Infrastructure Plant
TMGB	Telecommunications Main Grounding Busbar (also
	Primary Bonding Busbar (PBB))
TMS	Traffic Management System
TOR	Telephone Operators Room
TP	Balanced Twisted Pair (refer to STP and UTP)
TR	Telecommunications Room (refer to STR)
TWP	Twisted Pair

Bancroft Architects + Engineers

	Bancroft Architects + Engineers 09-01-1	
UHF	Ultra High Frequency (Radio)	
UMTS	Universal Mobile Telecommunications System	
UPCS	Unlicensed Personal Communications Service (refer to	
	PCS)	
UPS	Uninterruptible Power Supply	
USC	United States Code	
UTP	Unshielded Balanced Twisted Pair (refer to TP and	
	STP)	
UV	Ultraviolet	
V	Volts	
VAAR	Veterans Affairs Acquisition Regulation	
VACO	Veterans Affairs Central Office	
VAMC	VA Medical Center (refer to CBOC, OPC, VACO)	
VCCS	TIP's Vertical Cross Connection System (refer to CCS	
	and HCCS)	
VHF	Very High Frequency (Radio)	
VISN	Veterans Integrated Services Network (refers to	
	geographical region)	
VSWR	Voltage Standing Wave Radio	
W	Watts	
WEB	World Electronic Broadcast	
WiMAX	Worldwide Interoperability (for MW Access)	
WI-FI	Wireless Fidelity	
WMTS	Wireless Medical Telemetry Service	
WSP	Wireless Service Providers	

B. Definitions:

- Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- 2. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.

Bancroft Architects + Engineers

- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point; refer to Section 27 53 19, DISTRIBUTED RADIO ANTENNA (WITHIN BUILDING) EQUIPMENT AND SYSTEMS.
- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions.
- 13. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 01 - 19

Bancroft Architects + Engineers

09-01-19 digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.

- 14. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 15. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 16. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 17. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 18. Microducts: All forms of air blown fiber pathways.
- 19. Ohm: A unit of restive measurement.
- 20. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 21. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 22. Sound (SND): Changing air pressure to audible signals over given time span.
- 23. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 24. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

09 - 01 - 19

telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.

- 25. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 26. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:
 - 1. Federal Communications Commission, (FCC) CFR, Title 47:

Part 15	Restrictions of use for Part 15 listed RF
	Equipment in Safety of Life Emergency Functions
	and Equipment Locations
Part 47	Chapter A, Paragraphs 6.1-6.23, Access to
	Telecommunications Service, Telecommunications
	Equipment and Customer Premises Equipment
Part 58	Television Broadcast Service

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

27 05 11 - 10

06/02/2023

Bancroft Architects + Engineers

	Bancro	oft Architects + Engineers
	Part 73	09-01-19 Radio and Television Broadcast Rules
	Part 90	Rules and Regulations, Appendix C
	Form 854	Antenna Structure Registration
	Chapter XXIII	National Telecommunications and Information
		Administration (NTIA, P/O Commerce, Chapter
		XXIII) the `Red Book'- Chapters 7, 8 & 9
		compliments CFR, Title 47, FCC Part 15, RF
		Restriction of Use and Compliance in "Safety of
		Life" Functions & Locations
2.	US Department of Agr	iculture, (Title 7, USC, Chapter 55, Sections
	2201, 2202 & 2203:RU	S 1755 Telecommunications Standards and
	Specifications for M	aterials, Equipment and Construction:
	RUS Bull 1751F-630	Design of Aerial Cable Plants
	RUS Bull 1751F-640	Design of Buried Cable Plant, Physical
		Considerations
	RUS Bull 1751F-643	Underground Plant Design
	RUS Bull 1751F-815	Electrical Protection of Outside Plants,
	RUS Bull 1753F-201	Acceptance Tests of Telecommunications Plants
		(PC-4)
	RUS Bull 1753F-401	Splicing Copper and Fiber Optic Cables (PC-2)
	RUS Bull 345-50	Trunk Carrier Systems (PE-60)
	RUS Bull 345-65	Shield Bonding Connectors (PE-65)
	RUS Bull 345-72	Filled Splice Closures (PE-74)
	RUS Bull 345-83	Gas Tube Surge Arrestors (PE-80)
3.	US Department of Com	merce/National Institute of Standards
	Technology, (NIST):	
	FIPS PUB 1-1	Telecommunications Information Exchange
	FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
		Circuit Terminating Equipment for operation
		with Packet Switched Networks, or Between Two
		DTEs, by Dedicated Circuit
	FIPS PUB 140/2	Telecommunications Information Security
		Algorithms
	FIPS PUB 143	General Purpose 37 Position Interface between
		DTE and Data Circuit Terminating Equipment

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

	09-01-19
FIPS 160/2	Electronic Data Interchange (EDI),
FIPS 175	Federal Building Standard for
	Telecommunications Pathway and Spaces
FIPS 191	Guideline for the Analysis of Local Area
	Network Security
FIPS 197	Advanced Encryption Standard (AES)
FIPS 199	Standards for Security Categorization of
	Federal Information and Information Systems

4. US Department of Defense, (DoD):

MIL-STD-188-110	Interoperability and Performance Standards for	
	Data Modems	
NET OFF 100 114		

MIL-STD-188-114 Electrical Characteristics of Digital Interface Circuits

- MIL-C-39012/21 Connectors, Receptacle, Electrical, Coaxial, Radio Frequency, (Series BNC (Uncabled), Socket Contact, Jam Nut Mounted, Class 2)
- 5. US Department of Health and Human Services: The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules
- US Department of Justice:
 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).
- 7. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards): Subpart 7 Approved NRTLs; obtain a copy at

		https://www.osha.gov/dts/otpca/nrtl/nrtllist.ht
		ml
Subpart	35	Compliance with NFPA 101, Life Safety Code
Subpart	36	Design and Construction Requirements for Exit
		Routes
Subpart	268	Telecommunications

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

27 05 11 - 12

06/02/2023

Bancroft Architects + Engineers

	09-01-19
Subpart 305	Wiring Methods, Components, and Equipment for
	General Use
Subpart 508	Americans with Disabilities Act Accessibility
	Guidelines; technical requirement for
	accessibility to buildings and facilities by
	individuals with disabilities

- 8. US Department of Transportation, (DoT):
 - a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E -Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
 - d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
 - e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.
 - f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
 - g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design,

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

00-01-10

Bancroft Architects + Engineers

Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.

- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.

C. NRTL Standards: Refer to https://www.osha.gov/lawsregs/regulations/standardnumber/1926

- 1. Canadian Standards Association (CSA); same tests as presented by UL
- Communications Certifications Laboratory (CEL); same tests as presented by UL.
- Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
- 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduit
5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

	09-01-19
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

2011010	
	09-01-19
1863-2013	Standard for Safety, communications Circuits
	Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire
	Protection and Smoke-Release Test for
	Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways
2196-2001	Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014	Information Technology Equipment Safety

D. Industry Standards:

1. Advanced Television Systems Committee (ATSC):

				-	· · · ·				
A/53	Part	1:	2013	ATSC Digital	Television	Standard,	Part	1,	
				Digital Tele	vision Syste	em			
A/53	Part	2:	2011	ATSC Digital	Television	Standard,	Part	2,	
				RF/Transmiss	ion System (Characteri	stics		
A/53	Part	3:	2013	ATSC Digital	Television	Standard,	Part	3,	
				Service Mult	iplex and T	ransport S	ystem		
				Characterist	ics				
A/53	Part	4:	2009	ATSC Digital	Television	Standard,	Part	4,	MPEG-
				2 Video Syst	em Characte:	ristics			
A/53	Part	5:	2014	ATSC Digital	Television	Standard,	Part	5,	AC-3
				Audio System	Characteri	stics			
A/53	Part	6:	2014	ATSC digital	Television	Standard,	Part	6,	

- Enhanced AC-3 Audio System Characteristics
- American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities.

3. American Society of Mechanical Engineers (ASME):

A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices
17.3 (2011) Safety Code for Existing Elevators and

Escalators

Bancroft Architects + Engineers

	Bancroft Architects + Engineers				
	17.4 (2009)	09-01-19 Guide for Emergency Personnel			
	17.5 (2011)	Elevator and Escalator Electrical Equipment			
4.	American Society for	Testing and Materials (ASTM):			
	B1 (2001)	Standard Specification for Hard-Drawn Copper			
		Wire			
	B8 (2004)	Standard Specification for Concentric-Lay-			
		Stranded Copper Conductors, Hard, Medium-Hard,			
		or Soft			
	D1557 (2012)	Standard Test Methods for Laboratory Compaction			
		Characteristics of Soil Using Modified Effort			
		56,000 ft-lbf/ft3 (2,700 kN-m/m3)			
	D2301 (2004)	Standard Specification for Vinyl Chloride			
		Plastic Pressure Sensitive Electrical			
		Insulating Tape			
	B258-02 (2008)	Standard Specification for Standard Nominal			
		Diameters and Cross-Sectional Areas of AWG			
		Sizes of Solid Round Wires Used as Electrical			
		Conductors			
	D709-01(2007)	Standard Specification for Laminated			
		Thermosetting Materials			
	D4566 (2008)	Standard Test Methods for Electrical			
		Performance Properties of Insulations and			
		Jackets for Telecommunications Wire and Cable			
5.	5. American Telephone and Telegraph Corporation (AT&T) - Obtain				
	following AT&T Public	cations at https://ebiznet.sbc.com/sbcnebs/			
	ATT-TP-76200 (2013)	Network Equipment and Power Grounding,			
		Environmental, and Physical Design Requirements			
	ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation			
		Requirements			
	ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and			
		Removal Requirements - Cable Racks and Raceways			
	ATT-TP-76306 (2009)	Electrostatic Discharge Control			
	ATT-TP-76400 (2012)	Detail Engineering Requirements			
	ATT-TP-76402 (2013)	AT&T Raised Access Floor Engineering and			
		Installation Requirements			

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers 09 - 01 - 19ATT-TP-76405 (2011) Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments ATT-TP-76416 (2011) Grounding and Bonding Requirements for Network Facilities ATT-TP-76440 (2005) Ethernet Specification ATT-TP-76450 (2013) Common Systems Equipment Interconnection Standards for AT&T Network Equipment Spaces ATT-TP-76461 (2008) Fiber Optic Cleaning ATT-TP-76900 (2010) AT&T Installation Testing Requirement ATT-TP-76911 (1999) AT&T LEC Technical Publication Notice 6. British Standards Institution (BSI): BS EN 50109-2 Hand Crimping Tools - Tools for The Crimp Termination of Electric Cables and Wires for Low Frequency and Radio Frequency Applications - All Parts & Sections. October 1997 7. Building Industry Consulting Service International (BICSI): ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices ANSI/BICSI 004-2012 Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities ANSI/NECA/BICSI 568-2006 Standard for Installing Commercial Building Telecommunications Cabling NECA/BICSI 607-2011 Standard for Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System Design and Implementation Best Practices 8. Electronic Components Assemblies and Materials Association, (ECA). ECA EIA/RS-270 (1973) Tools, Crimping, Solderless Wiring Devices -Recommended Procedures for User Certification EIA/ECA 310-E (2005) Cabinets, and Associated Equipment 9. Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

09-01-19 10. Insulated Cable Engineers Association (ICEA): ANSI/ICEA S-80-576-2002 Category 1 & 2 Individually Unshielded Twisted-Pair Indoor Cables for Use in Communications Wiring Systems ANSI/ICEA S-84-608-2010 Telecommunications Cable, Filled Polyolefin Insulated Copper Conductor, S-87-640(2011) Optical Fiber Outside Plant Communications Cable ANSI/ICEA S-90-661-2012 Category 3, 5, & 5e Individually Unshielded Twisted-Pair Indoor Cable for Use in General Purpose and LAN Communication Wiring Systems S-98-688 (2012) Broadband Twisted Pair Cable Aircore, Polyolefin Insulated, Copper Conductors S-99-689 (2012) Broadband Twisted Pair Cable Filled, Polyolefin Insulated, Copper Conductors ICEA S-102-700 (2004)Category 6 Individually Unshielded Twisted Pair Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements 11. Institute of Electrical and Electronics Engineers (IEEE): ISSN 0739-5175 March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue:2) Medical Grade-Mission Critical-Wireless Networks IEEE C2-2012 National Electrical Safety Code (NESC) C62.41.2-2002/ Cor 1-2012 IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits 4)

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

		09-01-19			
	C62.45-2002	IEEE Recommended Practice on Surge Testing for			
		Equipment Connected to Low-Voltage (1000 V and			
		Less) AC Power Circuits			
	81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground			
		Impedance, and Earth Surface Potentials of a			
		Grounding System			
	100-1992	IEEE the New IEEE Standards Dictionary of			
		Electrical and Electronics Terms			
	602-2007	IEEE Recommended Practice for Electric Systems			
		in Health Care Facilities			
	1100-2005	IEEE Recommended Practice for Powering and			
		Grounding Electronic Equipment			
12.	International Code C	ouncil:			
	AC193 (2014)	Mechanical Anchors in Concrete Elements			
13.	International Organi	zation for Standardization (ISO):			
	ISO/TR 21730 (2007)	Use of Mobile Wireless Communication and			
		Computing Technology in Healthcare Facilities -			
		Recommendations for Electromagnetic			
		Compatibility (Management of Unintentional			
		Electromagnetic Interference) with Medical			
		Devices			
14.	National Electrical	Manufacturers Association (NEMA):			
	NEMA 250 (2008)	Enclosures for Electrical Equipment (1,000V			
		Maximum)			
	ANSI C62.61 (1993)	American National Standard for Gas Tube Surge			
		Arresters on Wire Line Telephone Circuits			
	ANSI/NEMA FB 1 (2012	2)Fittings, Cast Metal Boxes and Conduit Bodies			
		for Conduit, Electrical Metallic Tubing EMT)			
		and Cable			
	ANSI/NEMA OS 1 (2009)Sheet-Steel Outlet Boxes, Device Boxes, Covers,			
		and Box Supports			
	NEMA SB 19 (R2007)	NEMA Installation Guide for Nurse Call Systems			
	TC 3 (2004)	Polyvinyl Chloride (PVC) Fittings for Use with			
		Rigid PVC Conduit and Tubing			
	NEMA VE 2 (2006)	Cable Tray Installation Guidelines			

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

09-01-19

		09-01-19			
15.	15. National Fire Protection Association (NFPA):				
	70E-2015	Standard for Electrical Safety in the Workplace			
	70-2014	National Electrical Code (NEC)			
	72-2013	National Fire Alarm Code			
	75-2013	Standard for the Fire Protection of Information			
		Technological Equipment			
	76-2012	Recommended Practice for the Fire Protection of			
		Telecommunications Facilities			
	77-2014	Recommended Practice on Static Electricity			
	90A-2015	Standard for the Installation of Air			
		Conditioning and Ventilating Systems			
	99-2015	Health Care Facilities Code			
	101-2015	Life Safety Code			
	241	Safeguarding construction, alternation and			
		Demolition Operations			
	255-2006	Standard Method of Test of Surface Burning			
		Characteristics of Building Materials			
	262 - 2011	Standard Method of Test for Flame Travel and			
		Smoke of Wires and Cables for Use in Air-			
		Handling Spaces			
	780-2014	Standard for the Installation of Lightning			
		Protection Systems			
	1221-2013	Standard for the Installation, Maintenance, and			
		Use of Emergency Services Communications			
		Systems			
	5000-2015	Building Construction and Safety Code			
16.	Society for Protecti	ve Coatings (SSPC):			
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning			
17.	Society of Cable Tel	ecommunications Engineers (SCTE):			
	ANSI/SCTE 15 2006	Specification for Trunk, Feeder and			
		Distribution Coaxial Cable			
18.	Telecommunications I	ndustry Association (TIA):			
	TIA-120 Series	Telecommunications Land Mobile communications			
		(APCO/Project 25) (January 2014)			

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

TIA TSB-140	09-01-19 Additional Guidelines for Field-Testing Length,
	Loss and Polarity of Optical Fiber Cabling
	Systems (2004)
TIA-155	Guidelines for the Assessment and Mitigation of
	Installed Category 6 Cabling to Support
	10GBASE-T (2010)
TIA TSB-162-A	Telecommunications Cabling Guidelines for
	Wireless Access Points (2013)
TIA-222-G	Structural Standard for Antenna Supporting
	Structures and Antennas (2014)
TIA/EIA-423-B	Electrical Characteristics of Unbalanced
	Voltage Digital Interface Circuits (2012)
TIA-455-C	General Requirements for Standard Test
	Procedures for Optical Fibers, Cables,
	Transducers, Sensors, Connecting and
	Terminating Devices, and other Fiber Optic
	Components (August 2014)
TIA-455-53-A	FOTP-53 Attenuation by Substitution
	Measurements for Multimode Graded-Index Optical
	Fibers in Fiber Assemblies (Long Length)
	(September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)
ANSI/TIA-492-B	62.5- μ Core Diameter/125-um Cladding Diameter
	Class 1a Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November
	2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September
	2002)

Bancroft Architects + Engineers

Danci	09-01-19
TIA-492E000	Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4
	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data
	Terminal equipment and Data Circuit Terminating
	Equipment Employing Serial Binary Interchange
	(May 2003)
TIA/EIA-590-A	Standard for Physical Location and Protection
	of Below Ground Fiber Optic Cable Plant (July
	2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

BallCro	09-01-19
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- 6. General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
- 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
- Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
- General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
- 13. Wiring devices: Section 26 27 26, WIRING DEVICES.
- 14. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
- 15. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 16. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 09 - 01 - 19

Bancroft Architects + Engineers

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - Movement of materials: Unload materials and equipment delivered to site. Pay costs for rigging, hoisting, lowering and moving equipment on and around site, in building.
 - Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work. Plan for large equipment requiring positioning prior to closing in building.
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
 - 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - Manage work related to telecommunications system installation in a manner approved by manufacturer.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 09-01-19

Bancroft Architects + Engineers

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09-01-19

Bancroft Architects + Engineers

supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.

- H. Test Equipment List:
 - Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IV twisted pair cabling test instrument.
 - b. Optical time domain reflectometer (OTDR).
 - c. Volt-Ohm meter.
 - 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
 - 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 - Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
 - Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
 - Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 09 - 01 - 19

Bancroft Architects + Engineers

09-01-19

K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
 - Provide a Table of Contents and assemble files to conform to Table of Contents.
 - 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

27 05 11 - 29

06/02/2023

Bancroft Architects + Engineers

- j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
- k. Warranty documentation indicating end date and equipment protected under warranty.
- Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
 - 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
 - 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
 - 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 01 - 19

Bancroft Architects + Engineers

- g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- Deliver Record Wiring Diagrams as CAD files in .dwg formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing,

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

certifying, supervising, training, and documentation. Identify these installations as a part of submittal.

- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
 - Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - 2. Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 09-01-19

Bancroft Architects + Engineers

09-01-19

numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.

- B. Storage and Handling Requirements:
 - Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

- A. Comply with FAR clause 52.246-21.
 - Warranty material and equipment to be free from defects, workmanship, and remain so for a period of one year for Emergency Systems from date of final acceptance of system by Government; provide OEM's equipment warranty document to COR.
 - Government maintenance personnel must have ability to contact OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time; contractor and OEM must provide this capability.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

PART 2 - PRODUCTS

09-01-19

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.
- B. In cases of renovations in historic or otherwise restrictive buildings, where it has been determined as impossible to follow above stated guidelines, exceptions must not modify maximum distances set forth in TIA 568 and 569; and exceptions must not in any way effect performance of entire TIP system.
- C. Modification to administrative issues requires written approvals from COR with concurrence from SMCS 0050P2H3, OEM, contractor, and local authorities.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE (NOT USED)

2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

Bancroft Architects + Engineers

09-01-19

2.6 UNDERGROUND CABLES (NOT USED)

- 2.7 AERIAL (ABOVEGROUND) ENCLOSURES (NOT USED)
- 2.8 TEMPORARY TIP PATHS (OVERHEAD TRACKS, ROAD/PATH BRIDGES, ETC.) (NOT USED)

2.9 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - 3. Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - 4. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

Install sleeves through floors watertight and extend minimum 50.8 mm
 (2 inches) above floor surface.

- 8. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
 - 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09-01-19

Bancroft Architects + Engineers

09-01-19 conditions and then only after arranging to provide temporary utility services, according to requirements indicated: a. Notify COR in writing at least 14 days in advance of proposed

- utility interruptions.
- b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.

Bancroft Architects + Engineers

- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 01 - 19

Bancroft Architects + Engineers

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09-01-19

Bancroft Architects + Engineers

- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or noncompliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.
- G. Tests:
 - Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B pin assignments and cabling connections are in compliance with TIA standards.

Bancroft Architects + Engineers

- 6. Visually confirm minimum Category 6A cable marking at TCOs, CCSs locations, patch cords and origination locations.
- 7. Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. Provide results of interim inspections to COR.
- 10. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 11. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - 2. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.
- I. Acceptance Test:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 09-01-19

27 05 11 - 41

Bancroft Architects + Engineers

- Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - EMS Representatives: Police, Sherriff, City, County or State representatives.
- Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - Demonstrate and verify that system complies with performance requirements under operating conditions.
 - Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 01 - 19

Bancroft Architects + Engineers

- Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
- If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- J. Acceptance Test Procedure:
 - Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
 - A system inventory including available spare parts must be taken at this time.
 - 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
 - 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
 - Inventory system diagrams, record drawings, equipment manuals, pretest results.
 - Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- K. Operational Test:
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided,

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 09 - 01 - 19

Bancroft Architects + Engineers

```
09-01-19
```

COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.

3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

A. Protection of Fireproofing:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

 Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.

- Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
- Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

09-01-19

Bancroft Architects + Engineers

06-01-15

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- B. Ground Rods:
 - Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
 - Provide quantity of rods required to obtain specified ground resistance.
- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- D. Telecommunication System Ground Busbars:
 - 1. Telecommunications Main Grounding Busbar (TMGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
 - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.
 1) 27 lugs with 15.8 mm (5/8 inch) hole centers.
 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
 - 2. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- E. Equipment Rack and Cabinet Ground Bars:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

06-01-15

Bancroft Architects + Engineers

1. Solid copper ground bars designed for horizontal mounting to

framework of open racks or enclosed equipment cabinets:

- a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.
- b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
- c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
- d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole
 grounding lugs.
- e. Copper splice bar of same material to transition between adjoining racks.
- f. Two each 12-24 x 19.1 mm (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- 2. Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- F. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

06-01-15

Bancroft Architects + Engineers

- 4. Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
- 5. Listed as a wire connector.
- G. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.
- H. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- I. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Exterior Equipment Grounding: Bond exterior metallic components (including masts and cabinets), antennas, satellite dishes, towers, raceways, primary telecommunications protector/arresters, secondary surge protection, waveguides, cable shields, down conductors and other conductive items to directly to Intersystem Bonding Termination.
- B. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- C. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- D. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06 - 01 - 15

Bancroft Architects + Engineers

06-01-15

- E. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- F. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 5. Below-Grade Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with manufacturer's recommendations. After welds have been made and cooled, brush slag from weld area and thoroughly clean joint areas. Notify COR prior to backfilling at ground connections.
 - 6. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.
 - 7. Bonding Jumpers:
 - a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
 - 8. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
- c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
- d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.
- G. Telecommunications Room Bonding:
 - 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
 - d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
 - 2. Telephone-Type Cable Rack Systems:
 - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
 - b. Make ground connections by installing bonding jumpers:
 - Install minimum 16 mm² (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
 - Install 16 mm² (6 AWG) bonding jumpers across aluminum pan junctions.
- H. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - At each rack or cabinet containing active equipment or shielded cable terminations:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

06 - 01 - 15

Bancroft Architects + Engineers

- a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
- b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
- c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
- d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- I. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- J. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- K. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06-01-15

Bancroft Architects + Engineers

an effective ground source and bond all other metallic components and equipment at that location.

- L. Communications Cable Tray Systems:
 - Bond metallic structures of cable tray to provide 100 percent electrical continuity throughout cable tray systems.
 - 2. Where metallic cable tray systems are mechanically discontinuous:
 - a. Install splice plates provided by cable tray manufacturer between cable tray sections so resistance across a bolted connection is 0.010 ohms or less, as verified by measuring across splice plate connection.
 - b. Install 16 mm² (6 AWG) bonding jumpers across each cable tray splice or junction where splice plates cannot be used.
 - 3. Bond cable tray installed in same room as telecommunications grounding busbar to busbar.
- M. Communications Raceway Grounding:
 - Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
 - Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.
- N. Ground Resistance:
 - Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
 - Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
 - Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD QUALITY CONTROL

A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06 - 01 - 15

Bancroft Architects + Engineers

- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

06-01-15

Bancroft Architects + Engineers

10-01-18

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- B. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- C. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- D. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

27 05 33 - 1

06/02/2023

Bancroft Architects + Engineers

- Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
- 3. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
- 4. Flexible Galvanized Steel Conduit: Conform to UL 1.
- 5. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
- 6. Surface Metal Raceway: Conform to UL 5.
- 7. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10-01-18

Bancroft Architects + Engineers

- Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- g. Provide OEM approved fittings.
- 2. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of
 "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 3. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- 5. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10-01-18

Bancroft Architects + Engineers

10-01-18

to prevent wires and cables from changing from one partitioned pathway to another.

- Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 8. Wireway Fittings: As recommended by wireway OEM.
- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gauge) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

27 05 33 - 4

Bancroft Architects + Engineers

- 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
 - 5. Size: Metric Designator 53 (trade size 2) or smaller.
 - Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
 - 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
 - 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
 - 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 10-01-18

Bancroft Architects + Engineers

- 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- I. Outlet Boxes:
 - Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
 - 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- J. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Master Antenna Television Equipment and Systems	27 41 31	Conduit to Cable Tray, Partitioned Cable Tray
Public Address and Mass Notification Systems	27 51 16	Complete conduit
Intercommunications and Program systems	27 51 23	Conduit to Cable Tray, Partitioned Cable Tray
Nurse Call	27 52 23	Complete Conduit
Security Emergency Call, Duress Alarm, and Telecommunications	27 52 31	Conduit to Cable Tray, Partitioned Cable Tray
Miscellaneous Medical Systems	27 52 41	Complete Conduit

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

10-01-18

System	Specification Section	Installed Method
Distributed Radio Antenna Equipment and System	27 53 19	Conduit to Cable Tray, Partitioned Cable Tray

- B. Penetrations:
 - 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
 - d. Waterproofing at Floor Conduit Penetrations:
 - Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS or directed by waterproofing manufacturer.
- C. Conduit Installation:
 - 1. Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
- Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

27 05 33 - 8

¹⁰⁻⁰¹⁻¹⁸

Bancroft Architects + Engineers

- Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel or IMC.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10-01-18

27 05 33 - 9

Bancroft Architects + Engineers

- 1) Where shown on structural drawings.
- As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - Conduit outside diameter larger than 1/3 of slab thickness is prohibited.
 - Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
- e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- E. Furred or Suspended Ceilings and in Walls:
 - Rigid steel, or IMC. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel or IMC.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

27 05 33 - 10

06/02/2023

Bancroft Architects + Engineers

- a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
- b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
- c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- G. Expansion Joints:
 - Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
 - Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
 - 3. Install expansion and deflection couplings where shown.
- H. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 10-01-18

Bancroft Architects + Engineers

- Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
- Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- Bolts supported only by plaster or gypsum wallboard are not acceptable.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- I. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
 - 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
 - Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
 - 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
 - Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10-01-18

27 05 33 - 12

Bancroft Architects + Engineers

```
10-01-18
J. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
```

- 1. Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
- 2. Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
- 3. Install only in accessible spaces not subject to physical damage or corrosive influences.
- Make bends manually to assure internal diameter of tubing is not effectively reduced.
- 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

06-01-15

SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27 .

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.
 - 2. Minimum size of doors for cable reel passage.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- D. Power: Provide specific voltage, amperage, phases and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:
 - Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
 - 2. Provide certified OEM sweep test tags from each cable reel to COR.
 - Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
 - Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
 - 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
 - Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
 - 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06 - 01 - 15

Bancroft Architects + Engineers

06-01-15

- Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.
- 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:
 - 1) 18 AWG, minimum, Outside.
 - 2) 20 AWG, minimum, Inside.
 - d. Color Coding: Required, EIA industry standard.
 - e. Bend Radius: 10 times cable outside diameter.
 - f. Impedance: As required.
 - g. Shield Coverage: As required by OEM specification.
 - h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum	
0.7	5.2	
1.0	6.5	
4.0	14.0	
8.0	19.0	
16.0	26.0	
20.0	29.0	
25.0	33.0	
31.0	36.0	
50.0	52.0	

- E. Distribution System Signal Wires and Cables:
 - Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
 - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
 - Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
 - 4. Terminate on an item of equipment by direct connection.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems; provide not less than TIA Performance Category 6A.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:
 - Provide connectors for transmission lines, and signal extensions to maintain uninterupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
 - Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wirewrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

06-01-15

Bancroft Architects + Engineers

1) Control Cable Shields.

2) Data Cable Shields.

- 3) Equipment Racks.
- 4) Equipment Cabinets.
- 5) Conduits.
- 6) Ducts.
- 7) Cable Trays.
- 8) Power Panels.
- 9) Connector Panels.
- 10) Grounding Blocks.
- b. Bond radio equipment to earth ground via internal building wiring, according to NEC.
- Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- 4. Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.
 a. Digital or High Speed Data:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

06-01-15

Bancroft Architects + Engineers

06-01-15

- Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 5E (or on a case by case basis Category 6A for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services, and COR) RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
- 2) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 2.
 - b) Number of Jacks Per Row: Minimum 24.
 - c) Type of Jacks: RJ45.
 - d) Terminal Protector: Required for each used or unused jack.
 - e) Insulation: Required between each row of jacks.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.
 - 3. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.
 - c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
 - d. Pull multiple cables into a single conduit together.
- B. Control, Communication and Signal Wiring Installation:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

06-01-15

- Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
- Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
- 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
- 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
- 5. Concealed splices are not allowed.
- Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
- 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right.
- Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
- 9. Install wires or cables outside of buildings in conduit, secured to solid building structures.
- 10. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).
- Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

- 12. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
 - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
 - b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
 - c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
 - d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
 - e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
 - f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.
- C. AC Power:
 - Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.
 - 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
 - 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
 - Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

06 - 01 - 15

Bancroft Architects + Engineers

06 - 01 - 15

connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

A. Control, Communication and Signal System Identification:

- 1. Install a permanent wire marker on each wire at each termination.
- 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
- 3. Install labels retaining their markings after cleaning.
- 4. In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.

B. Labeling:

- 1. Industry Standard: ANSI/TIA-606-B.
- Print lettering for data circuits using laser printers ; handwritten labels are not acceptable.
- 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
- Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.
- 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
- Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.

- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

- - - E N D - - -

06-01-15

Bancroft Architects + Engineers

01-01-16

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Medical Center here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Pictorial layout drawing of each telecommunications room showing termination cabinets, each distribution cabinet and rack, as each is expected to be installed and configured.
 - List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-16

- Pre-acceptance Certification: Submit in accordance with test procedures.
- Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
- Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" data distribution subsystems, and associated hardware including telecommunications outlets (TCO); copper and distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
 - Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-16 Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.

- C. System Performance: Provide complete system to meet or exceed TIA Category 6A requirements.
- D. Specific Subsystem Requirements: Provide products necessary for a complete and functional data communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- E. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- F. Terminate all interconnecting twisted pair on patch panels or punch blocks. Terminate unused or spare conductors. Do not leave unused or spare twisted pair wire unterminated, unconnected, loose or unsecured.
- G. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- H. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

27 15 00 - 3

Bancroft Architects + Engineers

\$01-01-16\$ OI&T Service prior to installation to confirm type of environment present at each location.

- c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
- 2. Telecommunications Rooms (TR):
 - a. In TR's served with UTP and STP, terminate UTP and STP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels.
 - b. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
- 3. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6Arequirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 500 MHz.
 - c. Provide four pair 0.326 mm2 (22 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):
 - Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category
 6A Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
- B. Cross-Connect Systems (CCS):
- C. Copper Cables: Provide copper CCS sized to connect cables at TR.
- C. Telecommunication Room (TR):
 - Terminate backbone and horizontal, copper cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or crossconnecting used. Provide cable management system as a part of each CCS.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- D. Main Cross-connection Subsystem (MCCS): MCCS is common point of distribution for inter- and intra-building copper backbone system cables, and connections to the voice (telephone) and data cable systems.
 - Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of jacks of same patch panel.
 - c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- E. Copper Outside Plant Cable: Minimum of STP or UTP, 22 AWG solid conductors, solid PVC insulation, and filled core (flex gel waterproof Rural Electric Association (REA) listed PE 39 code) between outer armor or jacket and inner conductors protective lining.
 - 1. Provide copper cable system as a Star Topology.
- F. Horizontal Cabling (HC):
 - Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft). Splitting of pairs within a cable between different jacks is not permitted.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum one voice (telephone) RJ45 jack and two data RJ45 jacks mounted in a outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

01-01-16

27 15 00 - 5

Bancroft Architects + Engineers

steel faceplate. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met. a.

Frequency (MHz)	Category 6 (dB)	Category 6A (dB)
.772	_	-
1	2.0	2.1
4	3.8	3.8
8	5.3	5.3
10	6.0	5.9
16	7.6	7.5
20	8.5	8.4
25	9.5	9.4
31.25	10.7	10.5
62.5	15.4	15.0
100	19.8	19.1
200	29.0	27.6
250	32.8	31.1
300		34.3
400		40.1
500		45.3

- 2. Data Multi-Conductor:
 - a. Unshielded F/UTP cable with solid conductors.
 - b. Able to handle the power and voltage used over the distance required.
 - c. Meets TIA transmission performance requirements of Category 6A.
 - d. Technical Characteristics:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-16

- 1) 0.205 mm2 (24 AWG) 0.326 mm2 (22 AWG) cable
- 2) Working Shield: 350 V.
- 3) Bend Radius: 10 times cable outside diameter.
- 4) Impedance: 100 Ohms + 15%, BAL.
- 5) Bandwidth: 500 MHz.
- 6) DC Resistance: Maximum 9.38 Ohms/100m (328 ft.) at 20 degreesC.
- 7) Maximum Mutual Capacitance: 5.6 nF per 100 m (328 ft.).
- 8) Shield Coverage:
 - a) Overall Outside (if OEM specified): 100 percent.
 - b) Individual Pairs (if OEM specified): 100 percent.

Frequency	Category 6	Category 6A
(MHz)	(dB)	(dB)
1	2.0	2.1
4	3.8	3.8
8	5.3	5.3
10	6.0	5.9
16	7.6	7.5
20	8.5	8.4
25	9.5	9.4
31.25	10.7	10.5
62.5	15.4	15.0
100	19.8	19.1
200	29.0	27.6
250	32.8	31.1
300		34.3
400		40.1
500		45.3

9) Maximum attenuation for 100m (328 ft.) at 20° C:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

01-01-16

- 3. Data:
 - a. Provide a connection cable for each TCO data jack in system with
 10 percent spares to connect a data instrument to TCO data jack.
 Do not provide data terminals/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - Cable: Data grade Category 5E or on a case-by-case basis
 Category 6A for specialized powered systems accepted by SMCS
 0050P2H3 (202) 461-5310, IT and FMS Services and COR.
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard.
 - 5) Size: Minimum 24 AWG.
- B. System Connectors:
 - Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP F/UTP cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - b) RJ-11/45: Compatible with RJ-45.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - 5) Leakage: Maximum 100 $\mu A.$
 - 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- C. Conduit and Signal Ducts:
 - 1. Conduit:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

27 15 00 - 8

Bancroft Architects + Engineers

- 01-01-16
- a. Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
- b. Minimum Conduit Size: 19 mm (3/4 inch).
- c. Provide separate conduit and signal ducts for each cable type installation.
- d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
- e. Maximum 40 percent conduit fill for cable installation.
- Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
 - 3. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.
- D. Labeling:
 - Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- Print lettering of labels with laser printers; handwritten labels are not acceptable.
- 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
- 4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

- A. Interim Inspection:
 - Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factorycertified representative and witnessed by COR.
 - 2. Check each item of installed equipment to ensure appropriate NRTL label.
 - Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections comply with TIA standards.
 - Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
 - 5. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
 - 6. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
 - 7. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

01-01-16

27 15 00 - 10

Bancroft Architects + Engineers

 Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.

- Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Verification Tests:
 - Test UTP STPcopper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
- D. Performance Testing:
 - Perform Category 6A for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, IT and FMS Services and COR) tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
- E. Total System Acceptance Test: Perform verification tests for UTP STP copper cabling systems cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 01-01-16

Bancroft Architects + Engineers

 Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.

- a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
- B. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.
- 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

01-01-16

DIVISION 28

Bancroft Architects + Engineers

10-01-18

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 27 05 11 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

28 05 13 - 1

Bancroft Architects + Engineers

- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the Contracting Officer's Representative four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.

c. Patch panels. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

¹⁰⁻⁰¹⁻¹⁸

Bancroft Architects + Engineers

10-01-18

- 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
- 6. Project planning documents as specified in Part 3.
- 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical

Insulating Tape

- C. Federal Specifications (Fed. Spec.):
 A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed
 Installation)
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):
 - 44-05..... Thermoset-Insulated Wires and Cables
 - 83-08.....Thermoplastic-Insulated Wires and Cables
 - 467-07..... Electrical Grounding and Bonding Equipment
 - 486A-03.....Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - 486C-04.....Splicing Wire Connectors
 - 486D-05.....Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations
 - 486E-00.....Equipment Wiring Terminals for Use with
 - Aluminum and/or Copper Conductors
 - 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable
 - 514B-04.....Fittings for Cable and Conduit
 - 1479-03.....Fire Tests of Through-Penetration Fire Stops//

1.7 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- Test optical fiber cable to determine the continuity of the strand end to end. Use [optical-fiber flashlight] [or] [optical loss test set] <Insert test>.
- Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
- 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.
 - B. Support of Open Cabling: NRTL labeled for support of [Category 5e] [Category 6] cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars and spools.
 - 3. Straps and other devices.
 - C. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems."[Flexible metal conduit shall not be used.]
 - 1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 10-01-18

Bancroft Architects + Engineers

10-01-18

- 2.2 BACKBOARDS (NOT USED)
- 2.3 UTP CABLE (NOT USED)
- 2.4 UTP CABLE HARDWARE (NOT USED)
- 2.5 OPTICAL FIBER CABLE (NOT USED)
- 2.6 OPTICAL FIBER CABLE HARDWARE (NOT USED)
- 2.7 COAXIAL CABLE (NOT USED)
- 2.8 COAXIAL CABLE HARDWARE (NOT USED)
- 2.9 RS-232 CABLE (NOT USED)
- 2.10 RS-485 CABLE (NOT USED)
- 2.11 LOW-VOLTAGE CONTROL CABLE (NOT USED)
- 2.12 CONTROL-CIRCUIT CONDUCTORS (NOT USED)

2.13 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG [size as recommended by system manufacturer].
 - Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
 - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.14 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.15 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to

TIA/EIA-568-B.1. Contract No. 36C26319D0022 Station Project No. 656-19-309

Bancroft-AE Project No. 18-116 28 05 13 - 5

Bancroft Architects + Engineers

- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.16 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.17 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
- 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Contracting Officer's Representative
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10-01-18

28 05 13 - 7

Bancroft Architects + Engineers

- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] <Insert dimension> apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- L. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.
 - Install cabling after the flooring system has been installed in raised floor areas.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10-01-18

28 05 13 - 8

D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a nonhardening approved compound.

Bancroft Architects + Engineers

3. Coil cable [72 inches (1830 mm)] <Insert size> long shall be neatly coiled not less than [12 inches (300 mm)] <Insert size> in diameter below each feed point.

10-01-18

- M. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
 - 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
 - 5. Separation between Cables and Electrical Motors and Transformers, $\boldsymbol{5}$

kVA or HP and Larger: A minimum of 48 inches (1200 mm). Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 28 05 13 - 9

Bancroft Architects + Engineers

 Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

10-01-18

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - Install plenum cable in environmental air spaces, including plenum ceilings.
 - Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:
 - Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 - 2. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is permitted.
 - Signaling Line Circuits: Power-limited fire alarm cables shall not be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-

indicating circuits differently from alarm-initiating circuits. Use Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06/02/2023

28 05 13 - 10

Bancroft Architects + Engineers

10-01-18 different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:

- 1. Class 1 remote-control and signal circuits, No. 14 AWG.
- 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
- 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "INTRUSION DETECTION" for connecting, terminating, and identifying wires and cables.
- C. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.
- D. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.
- E. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI

TDMM, "Grounding, Bonding, and Electrical Protection" Chapter. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06/02/2023

28 05 13 - 11

Bancroft Architects + Engineers

10-01-18

B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

10-01-18

Bancroft Architects + Engineers

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- F. Section 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- G. Section 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09-11

Bancroft Architects + Engineers

09-11

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 27 05 1, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Contracting Officer's Representative four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

```
F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.1. Custom enclosures and cabinets.
```

- F. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

C. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit

5-04.....Surface Metal Raceway and Fittings

6-07.....Rigid Metal Conduit

- 50-07.....Enclosures for Electrical Equipment
- 360-09.....Liquid-Tight Flexible Steel Conduit
- 467-07..... Grounding and Bonding Equipment
- 514A-04.....Metallic Outlet Boxes
- 514B-04.....Fittings for Cable and Conduit

514C-02.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers

651-05.....Schedule 40 and 80 Rigid PVC Conduit

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

28 05 28.33 - 3

06/02/2023

09 - 11

Bancroft Architects + Engineers

Conduit

797-07.....Electrical Metallic Tubing

1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- C. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- D. Flexible galvanized steel conduit: Shall Conform to UL 1.
- E. Liquid-tight flexible metal conduit: Shall Conform to UL 360.

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09-11

 $28 \ 05 \ 28.33 \ - \ 4$

Bancroft Architects + Engineers

- 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- C. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- D. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- E. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- F. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 11

Bancroft Architects + Engineers

 Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.

4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 11

Bancroft Architects + Engineers

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 WARNING TAPE

A. Standard, 4-Mil polyethylene 76 mm (3 inches) wide tape non-detectable type, red with black letters, and imprinted with "CAUTION BURIED ELECTRONIC SAFETY AND SECURITY CABLE BELOW".

2.10 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING (NOT USED)

2.11 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.12 SLEEVE SEALS (NOT USED)

2.13 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. WIRELINE DATA TRANSMISSION MEDIA FOR SECURITY SYSTEMS

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Contracting Officer's Representative prior to drilling through structural sections.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09-11

Bancroft Architects + Engineers

allowed, except where permitted by the Contracting Officer's Representative as required by limited working space.

- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

A. Install conduit as follows:

- 1. In complete runs before pulling in cables or wires.
- 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
- 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
- 5. Mechanically continuous.
- Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
- 7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.

11. Do not use aluminum conduits in wet locations. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09-11

28 05 28.33 - 8

Bancroft Architects + Engineers

- 12. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Contracting Officer's Representative.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Contracting Officer's Representative prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit

crossings. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 11

28 05 28.33 - 9

Bancroft Architects + Engineers

- c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

28 05 28.33 - 10

Bancroft Architects + Engineers

2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

28 05 28.33 - 11

Bancroft Architects + Engineers

- a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
- b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
- c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 11

28 05 28.33 - 12

Bancroft Architects + Engineers

- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

09 - 11

28 05 28.33 - 13

Bancroft Architects + Engineers

09-11

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3⁄4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

28 05 28.33 - 14

06/02/2023

Bancroft Architects + Engineers

11-1-16

SECTION 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

28 08 00 - 2

Bancroft Architects + Engineers

Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Contracting Officer's Representative. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Contracting Officer's Representative and

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

28 08 00 - 3

Bancroft Architects + Engineers

Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Contracting Officer's Representative after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 28 Sections for additional Contractor training requirements.

----- END -----

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COR. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - 1. Building 50 has an existing automatic digitized voice fire alarm signal.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit located in ELECT. ROOM 23A.

1.2 SCOPE

A. A fully addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless Contract No. 36C26319D0022

Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

28 31 00 - 1

Bancroft Architects + Engineers

specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- B. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 2. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 3. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
 - 4. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for

sprinkler systems. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- D. Section 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS. Requirements for general requirements that are common to more than one section in Division 28.
- E. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- F. Section 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS. Requirements for grounding of equipment.
- G. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- H. Section 28 08 00, COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD Release 2018 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Representative (COR). Bid drawing files will be provided to the Contractor at the preconstruction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2018 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10 - 11

Bancroft Architects + Engineers

- d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
- e. Complete listing of all digitized voice messages.
- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10 - 11

Bancroft Architects + Engineers

- d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
- e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
 - 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
 - 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COR.
- G. Emergency Service:
 - 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COR.
- 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 06/02/2023

28 31 00 - 7

Bancroft Architects + Engineers

- 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
- 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency callback hours is based on actual time spent on site and does not include travel time.
- H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.
- I. In the event that VA modifies the fire alarm system post-Acceptance but during the 5 year Guaranty Period Service period, Contractor shall be required to verify that the system, as newly modified or added, is consistent with the manufacturer's requirements; any verification performed will be equitably adjusted under the Changes clause. The post-Acceptance modification or addition to the fire alarm system shall not void the continuing requirements under this contract set forth in the Guarantee Period Service provision for the fire alarm system as modified or added. The contract will be equitably adjusted under the Changes clause for such additional performance.

1.7 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications

shall be applicable. Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10 - 11

Bancroft Architects + Engineers

- B. National Fire Protection Association (NFPA): NFPA 13Standard for the Installation of Sprinkler Systems, 2022 edition NFPA 14 Standard for the Installation of Standpipes and Hose Systems, 2019 edition NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection, 2022 edition NFPA 70.....National Electrical Code (NEC), 2020 edition NFPA 72.....National Fire Alarm Code, 2022 edition NFPA 90A..... Standard for the Installation of Air Conditioning and Ventilating Systems, 2021 edition NFPA 101.....Life Safety Code, 2021 edition C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011 E. American National Standards Institute (ANSI):
 - S3.41.....Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
1. All new conduits shall be installed in accordance with NFPA 70.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10-11

Bancroft Architects + Engineers

- Conduit fill shall not exceed 40 percent of interior cross sectional area.
- 3. All new conduits shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - Wiring shall be in accordance with NEC article 760, Section 28 05

 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as
 recommended by the manufacturer of the fire alarm system. All wires
 shall be color coded. Number and size of conductors shall be as
 recommended by the fire alarm system manufacturer, but not less than
 18 AWG for initiating device circuits and 14 AWG for notification
 device circuits.
 - Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
 - 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 - 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10 - 11

Bancroft Architects + Engineers

2.3 FIRE ALARM CONTROL UNIT

A. General:

1. Is existing to remain. Refer to Electrical drawings for exact location.

2.4 STANDBY POWER SUPPLY (NOT USED)

2.5 ANNUNCIATION (NOT USED)

- 2.6 VOICE COMMUNICATION SYSTEM (VCS)
- A. General:1. Building 50 consists of an emergency voice communication system.

2.7 ALARM NOTIFICATION APPLIANCES (NOT USED)

2.8 ALARM INITIATING DEVICES (NOT USED)

2.9 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.

2.10 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

Bancroft Architects + Engineers

E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.11 SMOKE BARRIER DOOR CONTROL (NOT USED)

2.12 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- C. All keys shall be delivered to the COR.

2.13 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Duct smoke detectors with all appurtenances 1
 - 2. 2.5 oz containers aerosol smoke 1
 - 3. Fire alarm SLC cable (same as installed) 25 feet (152 m)
- C. Spare and replacement parts shall be in original packaging and submitted to the COR.
- D. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COR.
- E. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system <u>on site</u>. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.14 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COR before being posted.

Bancroft Architects + Engineers

PART 3 - EXECUTION

10-11

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

Bancroft Architects + Engineers

- L. If applicable under scope of work, connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.
- M. Connect combination closer-holders installed under Section 08 71 00, DOOR HARDWARE.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit.
 - 3. Release only the magnetic door holders on the floor from which alarm was initiated after the alert signal.
 - Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.
- C. Smoke detectors in the primary elevator lobbies shall, in addition to the above functions, return all elevators in the bank to the secondary floor.
- D. Smoke detectors in the remaining elevator lobbies, elevator machine room, or top of hoistway shall, in addition to the above functions, return all elevators in the bank to the primary floor.
- E. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders on that

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116 10 - 11

 $28 \ 31 \ 00 \ - \ 14$

Bancroft Architects + Engineers

floor . Operation of a smoke detector at a shutter used for automatic closing shall also release only the shutters on that floor .

- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- H. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

10 - 11

Bancroft Architects + Engineers

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the

Contract No. 36C26319D0022 Station Project No. 656-19-309 Bancroft-AE Project No. 18-116

06/02/2023

 $28 \ 31 \ 00 \ - \ 16$

Bancroft Architects + Engineers

system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.

C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.1 SMOKE ZONE DESCRIPTIONS:

4.2 DIGITIZED VOICE MESSAGES:

A. The existing digitized voice messages shall be maintained.

4.3 LOCATION OF VOICE MESSAGES:

Upon receipt of an alarm signal from the building fire alarm system, the voice communication system shall automatically transmit a 3 second tone alert and a pre-recorded fire alarm message throughout the building .

- - END - -